1.38 moles of oxygen
Explanation:
Thermal decomposition of Lead (II) nitrate is shown by the balanced equation below;
2Pb(NO₃)₂ → 2PbO + 4NO₂ + O₂
The mole ration of Lead (II) nitrate to oxygen is 2: 1
Therefore 2.76 moles of Lead (II) nitrate will lead to production of? moles of oxygen;
2: 1
2.76: x
Cross-multiply;
2x = 2.76 * 1
x = 2.76 / 2
x = 1.38
Answer:
a lot that's why it's really hot
To calculate how many photons are in a certain amount of energy (joules) we need to know how much energy is in one photon.
Start by using two equations:
Energy of a photon = Frequency * Planck's constant (6.626 * 10^(-34) J-s)
Speed of light (constant 3 * 10^8 m/s) = Frequency * Wavelength
Which means:
frequency = Speed of Light / Wavelength
So energy of a photon = (Speed of light * Planck's constant)/(Wavelength)
You may have seen this equation as E = hc/<span>λ</span>
We have a wavelength of 691 nm or 691 * 10^-9 meters
So we can plug in all of our knowns:
E = (6.626 * 10^(-34) J-s) * (3.00 * 10^8 m/s) / (691 * 10^-9 m) =
2.88 * 10^(-19) joules per photon
Now we have joules per photon, and the total number of joules (0.862 joules)
,so divide joules by joules per photon, and we have the number of photons:
0.862 J/ (2.88 * 10^(-19) J/photon) = 3.00 * 10^18 photons.
Answer:
the stabilization of the negative charge in orbitals with higher s character
Explanation:
Acetylide anion is a carbon anion compound or popularly called carbanion. Now Acetylide anion is sp hybridized. However acetylide anion tends to be more acidic as we move from sp³ to sp, hence acidicity increases, which makes sp to have the highest acidity and become the most stable.
So, we can conclude that the acetylide anion is more acidic due to the stabilization of the negative charge in orbitals with higher s character and as the s character increases, acidic nature of acetylide anion also increases.