Part a.
u = 0, the initial velocity
v = 60 mi/h, the final velocity
a = 2.35 m/s², the acceleration.
Note that
1 m = 1609.34 m.
Therefore
v = (60 mi/h)*(1609.34 m/mi)*(1/3600 h/s) = 26.822 m/s
Use the formula
v = u + at
(26.822 m/s) = (2.35 m/s²)*(t s)
t = 26.822/2.35 = 11.4 s
Answer: 11.4 s
Part b.
We already determined that v = 60 mi/h = 26.822 m/s.
t = 0.6 s
Therefore
(26.822 m/s) = (a m/s²)*(0.6 s)
a = 26.822/0.6 = 44.7 m/s²
Answer: 44.7 m/s²
Explanation:
the acceleration will be unchanged according to newton second law of motion
Answer:
discrimination: prejudice towards a person/group based on their race, sex, age, and/or sexual orientation
Explanation:
People of color face discrimination because of the color of their skin.
Answer:
When you have a cloudy night, the clouds prevent heat from escaping through the atmosphere and into space.
The clouds act like a blanket and trap the heat it, and that is why every time you have a cloudy night, it is always warmer than a clear night.
Answer:
Explanation:
Given a parallel plate capacitor of
Area=A
Distance apart =d
Potential difference, =V
If the distance is reduce to d/2
What is p.d
We know that
Q=CV
Then,
V=Q/C
Then this shows that the voltage is inversely proportional to the capacitance
Therefore,
V∝1/C
So, VC=K
Now, the capacitance of a parallel plate capacitor is given as
C= εA/d
When the distance apart is d
Then,
C1=εA/d
When the distance is half d/2
C2= εA/(d/2)
C2= 2εA/d
Then, applying
VC=K
V1 is voltage of the full capacitor V1=V
V2 is the required voltage let say V'
Then,
V1C1=V2C2
V × εA/d=V' × 2εA/d
VεA/d = 2V'εA/d
Then the εA/d cancels on both sides and remains
V=2V'
Then, V'=V/2
The potential difference is half when the distance between the parallel plate capacitor was reduce to d/2