0.0024 Is it rounded to four significant figures
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
The reaction has had a heat that is enthalpy of -22 kJ/mol. The exothermic process has been signaled by the negative sign.
The amount of energy that the system absorbs or releases to create the products is described as the heat of reaction.
The source of the reaction's heat is
H is equal to 3(413 Kj/mol) + 358 Kj/mol + 467 Kj/mol + 1070 Kj/mol = 3134 Kj/mol.
H prod equals 3(413 kj/mol) plus 347 kj/mol plus 358 kj/mol plus 467 kj/mol plus 745 kj/mol, or 3156 kj/mol.
H=3134 kj/mol - 3156 kj/mol = -22 Kj/mol
Negative findings point to an exothermic response.
A chemical process known as an exothermic reaction releases energy in the form of heat or light.
Learn more about exothermic reaction here-
brainly.com/question/10373907
#SPJ4
2 Corsls provide treatments
I believe that it most likely would be D.