Answer: For a. Mass number for the particle is 0.
For b. The charge on the particle is -1.
For c. Another name for
- particle is electron.
Explanation:
Beta- minus decay is the decay process in which beta-particle is emitted. The mass number of the nuclei remains same and the mass number of the particle is 0. The charge on the particle is -1 and the emitted particle is also called as electron.

For a. The mass number for the particle is 0.
For b. The charge on the particle is -1.
For c. Another name for
- particle is electron.
Mixtures and solutions... what?
22.3 g of NaN₃ are required to fully inflate an airbag of 11.6 L at STP.
To find the mass, the given data was,
Volume = 11.6 Liters
<h3>What is decomposition reaction?</h3>
A decomposition reaction can be defined as a chemical reaction in which one reactant breaks down into two or more products.
In airbags, sodium azide decomposes to form sodium and nitrogen gas, which inflates the bag. The decomposition reaction is:
2 NaN₃ ⇒ 2 Na + 3 N₂
We can calculate the mass of NaN₃ needed to produce 11.6 L of N₂ at STP, using the following relations.
- At STP, 1 mole of N₂ occupies 22.4 L.
- The molar ratio of N₂ to NaN₃ is 3:2.
- The molar mass of NaN₃ is 65.01 g/mol.
Substituting all the known values to find the volume,
11.6 × ( 1 / 22.4) × ( 2/3) × ( 65.01 / 1)
= 22.4 g.
22.4 g of NaN₃ are required to fully inflate an airbag of 11.6 L at STP.
Learn more about decomposition reaction,
brainly.com/question/8009068
#SPJ4
We calculate the entropy of an ideal gas follows:
<span>For an isothermal compression, change in internal energy is equal to zero.</span>
<span>Thus, the heat added to the gas is equal to the work done on the gas which is given as 1750 J.</span>
<span>Entropy would be 1750/301 = 5.81 J/K </span>
Answer:
Particles in all states of matter are in constant motion and this is very rapid at room temperature. A rise in temperature increases the kinetic energy and speed of particles; it does not weaken the forces between them. ... Individual particles in liquids and gases have no fixed positions and move chaotically.
Explanation: