The molecular formula for compound is
mass of compound is 0.670 g.
To calculate number of atoms first calculate number of moles in the compound as follows:

Molar mass of
is 283.886 g/mol, thus,

Thus, number of mole of
is 0.00236 mol.
From the molecular formula 1 mole of
has 2 mol of P (phosphorus) and 5 mol of O (oxygen).
Thus, number of moles of P and O in 0.00236 mol of
will be:

Similarly,

Now, in 1 mol of an element there are
atoms.
Number of atoms of P will be:

Similarly, number of atoms of O will be:

Total number of atoms will be sum of number of atoms of P and O:

Therefore, total number of atoms in
will be
.
Answer:
pH=2.34
Explanation:
HBr -> H + Br
The dissociation it's complete, for that reason the concentration of the products is the same of HBr
[H+]=[Br-]=0.00234 M
pH= - log (0.00234)=2.34
Answer is: B.) Yes, if work is done, this transfer process can take place.
For example, air conditioner involves a cyclic process that transfers heat from a cold reservoir to a hot reservoir, but with use of electricity.
Thermal conductuction is the transfer of heat through physical contact. Thermal conduction is the transfer of heat by microscopic collisions of particles. Heat spontaneously flows from a hotter to a colder body.
The process of heat conduction depends on four basic factors: the temperature gradient, the cross section of the materials involved, their path length and the properties of those materials.
Answer:
The boiling point of HF is <u><em>higher than</em></u> the boiling point of H2, and it is <u><em>higher than</em></u> the boiling point of F2.
Explanation:
In HF, inter- molecule forces will be present between the hydrogen and fluorine atoms. There will be hydrogen bonding present among the hydrogen and fluorine atoms. Hydrogen bonds are strong bonds and hence the boiling point for HF would be high as much energy will be required to break these bonds.
H2 and F2 will only have intra-molecular attractions and there will be no hydrogen bonds present in them. As a result, their boiling point will be lower.