Answer:
Explanation:
net force exerted on charge Q₃, exerted by charges Q₁and Q₂, will be zero
if net electric field due to charges Q₁ and Q₂ at origin is zero .
electric field due to Q₂
= 9 X 10⁹ X 3 x10⁹ / .04²
electric field due to Q₁
= 9 X 10⁹ X Q₁ / .02²
For equilibrium
9 X 10⁹ X Q₁ / .02² = 9 X 10⁹ X 3 x10⁻⁹ / .04²
Q₁ = 3 X10⁻⁹ x .02² / .04²
= 3 / 4 x 10⁻⁹
.75 x 10⁻⁹ C
Answer:
Circle or pie graph is used to show how a part of something relates to the whole.
Explanation:
Pie graphs are easy to read and can present a very clear picture of the relationships.
Answer:
(a) T = 0.412s
(b) f = 2.42Hz
(c) w = 15.25 rad/s
(d) k = 86.75N/m
(e) vmax = 5.03 m/s
Explanation:
Given information:
m: mass of the block = 0.373kg
A: amplitude of oscillation = 22cm = 0.22m
T: period of oscillation = 0.412s
(a) The period is the time of one complete oscillation = 0.412s
The period is 0.412s
(b) The frequency is calculated by using the following formula:

The frequency is 2.42 Hz
(c) The angular frequency is:

The angular frequency is 15.25 rad/s
(d) The spring constant is calculated by solving the following equation for k:

The spring constant is 86.75N/m
(e) The maximum speed is:

(f) The maximum force applied by the spring if for the maximum elongation, that is, the amplitude:

The maximum force that the spring exerts on the block is 17.35N
1) Vacuum tube
2) silicon
3) integrated, I.C.s
4) this one is worded weird. Transistors are the main part of voltage regulators but they use (require) diodes and capacitors, too. And they are all put onto a microchip in the power distribution section. sorry for the long explanation.
5) away from
6) directly, inversely