Answer:
A half-life is the time required for one half of the nuclei in a radio- active isotope to decay.
Explanation:
A radio-active isotope is an isotope which undergoes radioactive decay.
Radioactive decay is a spontaneous process in which the nucleus of an atom changes its state (turning into a different nucleus, or de-exciting), emitting radiation, which can be of three different types: alpha, beta or gamma.
The half-life of a radio-active isotope is the time required for half of the nuclei of the initial sample to decay.
The law of radio-active decay can be expressed as follows:

where
N(t) is the number of undecayed nuclei left at time t
N0 is the initial number of nuclei
t is the time
is the half-life
We see that when
(that means, when 1 half-life has passed), the number of undecayed nuclei left is

So, half of the initial nuclei.
99.0km/h =27.5m/s (this is the initial speed)
The final speed is zero
The distance is 50.0m
Therefore you use the formula:
vfinal²=vinitial²+2ad
a=(vfinal²-vinitial²)/2d
= (0²-27.5²)/(2x50.0)
=-7.5625 or in correct sigdigs -7.56m/s²
Hope this helps!
The first law of thermodynamics can be written as

where

is the variation of internal energy of the system

is the amount of heat absorbed by the system

is the work done by the system on the surrounding.
Using this form, the sign convention for Q and W becomes:
Q > 0 --> heat absorbed by the system (because it increases the internal energy)
Q < 0 --> heat released by the system (because it decreases the internal energy)
W > 0 --> work done by the system (for instance, an expansion: when the system expands, it does work on the surrounding, and so the internal energy decreases, this is why there is a negative sign in the formula Q-W)
W < 0 --> work done by the surrounding on the system (for instance, a compression: when the system is compressed, the surrounding is doing work on the system, and so the internal energy of the system increases)