Answer:
V = 2.32 Liters
Explanation:
PV = nRT => V = nRT/P
n = 25.8g/122g/mole = 0.21 mole
R = 0.08206 L·atm/mol·K
T = 25.44°C + 273 = 298.44K
P = 2.22 atm (given in problem)
V = (0.21mol)(0.08206 L·atm/mol·K)(298.44K)/(2.22atm) = 2.32 Liters at 25.44°C & 2.22atm
The reducing agent in the reaction 2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) is lithium (Li).
The general reaction is:
2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) (1)
We can write the above reaction in <u>two reactions</u>, one for oxidation and the other for reduction:
Li⁰(s) → Li⁺(aq) + e⁻ (2)
Fe²⁺(aq) + 2e⁻ → Fe⁰(s) (3)
We can see that Li⁰ is oxidizing to Li⁺ (by <u>losing</u> one electron) in the lithium acetate (<em>reaction 2</em>) and that Fe²⁺ in iron(II) acetate is reducing to Fe⁰ (by <u>gaining</u> two <em>electrons</em>) (<em>reaction 3</em>).
We must remember that the reducing agent is the one that will be oxidized by <u>reducing another element</u> and that the oxidizing agent is the one that will be reduced by <u>oxidizing another species</u>.
In reaction (1), the<em> reducing agent</em> is <em>Li</em> (it is oxidizing to Li⁺), and the <em>oxidizing agent </em>is<em> Fe(CH₃COO)₂</em> (it is reducing to Fe⁰).
Therefore, the reducing agent in reaction (1) is lithium (Li).
Learn more here:
I hope it helps you!
Answer: Yes
Explanation:
With more water, the molecules of the substance have more water molecules to form bonds with, thus they are dissolved even faster at that same particular temperature.
For example: a mildly soluble substance like powdered milk get more dissolved in your teacup as water, the solvent is increased
What is the solubility of barium chromate in parts per million?
*parts per million = Grams of Solute/grams of solution X 10^6 (which is ppm)
2.787 x 10^-3g/L x 1L/1000g x 10^6 = 0.02779, or 2.78 x 10^-2ppm
Answer in parts per million to three significant figures =2.78ppm
this is correct for the pearson mastering chemistry question