b. is equally as toxic as carbon monoxide (CO).
Explanation:
Hydrogen Cyanide is a product of combustion that is equally as toxic as carbon monoxide CO.
The gas is a product of combustion in blast furnances, coke ovens, e.t.c
- Just like carbon monoxide, they are blood agents that are toxic in the body
- Prolonged exposure to hydrogen cyanide can lead to death eventually.
- The gas is a able to produce cyanide ion that seriously impacts the process of cellular respiration and bringing it to a halt.
- It is listed as one of the dangerous chemical weapons.
Learn more:
Safety data sheets brainly.com/question/2188622
#learnwithBrainly
Answer:
V(average)=6.37 V
Explanation:
Given Data
Peak Voltage=10V
Frequency=10 kHZ
To Find
Average Voltage
Solution
For this first we need to find Voltage peak to peak
So
Voltage (peak to peak)= 2× voltage peak
Voltage (peak to peak)= 2×10
Voltage (peak to peak)= 20 V
Now from Voltage (peak to peak) formula we can find the Average Voltage
So
Voltage (peak to peak)=π×V(average)
V(average)=Voltage (peak to peak)/π
V(average)=20/3.14
V(average)=6.37 V
Neptune should be the right answer
Answer:
735 J
Explanation:
From the question given above, the following data were obtained:
Weight (W) = 49 N
Height (h) = 15 m
Potential energy =?
Potential energy is simply defined as the product of weight of the object and height to which the object is raised. Mathematically, it is expressed as:
Potential energy = weight × height
With the above formula, we can obtain the potential energy of the coconut as follow:
Weight (W) = 49 N
Height (h) = 15 m
Potential energy =?
Potential energy = weight × height
Potential energy = 49 × 15
Potential energy = 735 J
Thus, the potential energy of the coconut is 735 J
Answer:
PART A
In a solid
The attractive forces keep the particles together tightly enough so that the particles do not move past each other. ... In the solid the particles vibrate in place. Liquid – In a liquid, particles will flow or glide over one another, but stay toward the bottom of the container.
In a liquid
Particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles.
A gas
The particles move rapidly in all directions, frequently colliding with each other and the side of the container. With an increase in temperature, the particles gain kinetic energy and move faster.
PART B
The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert small force on the wall The pressure exerted by the gas is due to the sum of all these collision forces. The more particles that hit the walls, the higher the pressure.
Explanation:
GOOD LUCK!!! :)