Answer:
576 joules
Explanation:
From the question we are given the following:
weight = 810 N
radius (r) = 1.6 m
horizontal force (F) = 55 N
time (t) = 4 s
acceleration due to gravity (g) = 9.8 m/s^{2}
K.E = 0.5 x MI x ω^{2}
where MI is the moment of inertia and ω is the angular velocity
MI = 0.5 x m x r^2
mass = weight ÷ g = 810 ÷ 9.8 = 82.65 kg
MI = 0.5 x 82.65 x 1.6^{2}
MI = 105.8 kg.m^{2}
angular velocity (ω) = a x t
angular acceleration (a) = torque ÷ MI
where torque = F x r = 55 x 1.6 = 88 N.m
a= 88 ÷ 105.8 = 0.83 rad /s^{2}
therefore
angular velocity (ω) = a x t = 0.83 x 4 = 3.33 rad/s
K.E = 0.5 x MI x ω^{2}
K.E = 0.5 x 105.8 x 3.33^{2} = 576 joules
Incomplete question as the mass of baseball is missing.I have assume 0.2kg mass of baseball.So complete question is:
A baseball has mass 0.2 kg.If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Answer:
ΔP=20 kg.m/s
Explanation:
Given data
Mass m=0.2 kg
Initial speed Vi=-44.5m/s
Final speed Vf=55.5 m/s
Required
Change in momentum ΔP
Solution
First we take the batted balls velocity as the final velocity and its direction is the positive direction and we take the pitched balls velocity as the initial velocity and so its direction will be negative direction.So we have:

Now we need to find the initial momentum
So

Substitute the given values

Now for final momentum

So the change in momentum is given as:
ΔP=P₂-P₁
![=[(11.1kg.m/s)-(-8.9kg.m/s)]\\=20kg.m/s](https://tex.z-dn.net/?f=%3D%5B%2811.1kg.m%2Fs%29-%28-8.9kg.m%2Fs%29%5D%5C%5C%3D20kg.m%2Fs)
ΔP=20 kg.m/s
Answer:
Explained below:
Explanation:
When a cold air mass meets a warm air mass, a front is formed and if the cold air is replacing the warm air, it is known as a cold front. Cold fronts frequently cause thunderstorms or rain showers because they pressure the air in a steep upward direction at the front's edge. They are also responsible to bring the changes in atmospheric pressure and wind direction.