Answer:
Visible Light
wavelength = 4000 - 7000 Angstroms = 400 - 700 milli-microns
1 A unit = 10^-10 m
1 mμ = 10^-9 m
Answer:
John Dalton
Explanation:
Dalton's atomic theory was the foundation for a new understanding of chemical structures. He proposed that matter was constituted by indivisible and indestructible particles "atoms." He theorized that all atoms of a particular substance were equal, and the atoms of different substances had atoms of different sizes and masses.
He also proposed that all compounds of elements were combinations of elements but in a very precise ratio.
During that period of time, the bird's displacement was 4 km east. So its velocity was (4km east)/(11hrs). That's 0.36 km/hour east. (rounded)
Answer:
The terrestrial planets all have rocky surfaces that feature mountains, plains, valleys and other formations. ... Mars has very low atmospheric pressure, and Mercury has almost none, so craters are more common on these planets.
Explanation:
Answer:
At the closest point
Explanation:
We can simply answer this question by applying Kepler's 2nd law of planetary motion.
It states that:
"A line connecting the center of the Sun to any other object orbiting around it (e.g. a comet) sweeps out equal areas in equal time intervals"
In this problem, we have a comet orbiting around the Sun:
- Its closest distance from the Sun is 0.6 AU
- Its farthest distance from the Sun is 35 AU
In order for Kepler's 2nd law to be valid, the line connecting the center of the Sun to the comet must move slower when the comet is farther away (because the area swept out is proportional to the product of the distance and of the velocity:
, therefore if r is larger, then v (velocity) must be lower).
On the other hand, when the the comet is closer to the Sun the line must move faster (
, if r is smaller, v must be higher). Therefore, the comet's orbital velocity will be the largest at the closest distance to the Sun, 0.6 A.