Answer:
The power produced by the turbine is 23309.1856 kW
Explanation:
h₁ = 3755.39
s₁ = 7.0955
s₂ = sf + x₂sfg =
Interpolating fot the pressure at 3.25 bar gives;
570.935 +(3.25 - 3.2)/(3.3 - 3.2)*(575.500 - 570.935) = 573.2175
2156.92 +(3.25 - 3.2)/(3.3 - 3.2)*(2153.77- 2156.92) = 2155.345
h₂ = 573.2175 + 0.94*2155.345 = 2599.2418 kJ/kg
Power output of the turbine formula =
Which gives;
= -8*((2599.2418 - 3755.39)+(15^2 - 60^2)/2 ) = -22749.1856
= -22749.1856 - 560 = -23309.1856 kJ
= 23309.1856 kJ
Power produced by the turbine = Work done per second = 23309.1856 kW.
Answer:
Check the explanation
Explanation:
Energy alance of 2 closed systems: Heat from CO2 equals the heat that is added to air in
1x0.723x=3x0.780x ⇒ = 426.4 °K
The initail volumes of the gases can be determined by the ideal gas equation of state,
= = 0.201
The equilibrium pressure of the gases can also be obtained by the ideal gas equation
= 1x(8.314 28.97)x426.4+3x(8.314 44)x426.4
(0.201+1.275)
= 246.67 KPa = 2.47 bar
Answer:
The net amount of energy change of the air in the room during a 10-min period is 120 KJ.
Explanation:
Given that
Heat loss from room (Q)= 60 KJ/min
Work supplied to the room(W) = 1.2 KW = 1.2 KJ/s
We know that 1 W = 1 J/s
Sign convention for heat and work:
1. If heat is added to the system then it is taken as positive and if heat is rejected from the system then it is taken as negative.
2. If work is done by the system then it is taken as positive and if work is done on the system then it is taken as negative.
So
Q = -60 KJ/min
In 10 min Q = -600 KJ
W = -1.2 KJ/s
We know that
1 min = 60 s
10 min = 600 s
So W = -1.2 x 600 KJ
W = -720 KJ
WE know that ,first law of thermodynamics
Q = W + ΔU
-600 = - 720 + ΔU
ΔU = 120 KJ
The net amount of energy change of the air in the room during a 10-min period is 120 KJ.
Answer:
no
Explanation:
it's not a dead load because when load is put on the pillars it's not fully straining it's been slowly getting to be heavier in that period of time before it falls
According to EonCoat, corrosion is the process of decay on a material caused by a chemical reaction with its environment. Corrosion of metal occurs when an exposed surface comes in contact with a gas or liquid, and the process is accelerated by exposure to warm temperature, acids, and salts.” (1)
Although the word ‘corrosion’ is used to describe the decay of metals, all natural and man-made materials are subject to decay, and the level of pollutants in the air can speed up this process.