Answer:
5.42g, 71.77%
Explanation:

First, we have to write out the balanced chemical equation. The unbalanced equation can be written as “SO2+O2 -> SO3” and to balance it, we can see that having two mols of SO2 and two mols of SO3 will make each side have the same amount of mols per element on each side. So the balanced chemical equation is “2SO2 + O2 -> 2SO3”
Now, we want to solve for the theoretical yield in grams of SO3. To do this, we have to use dimensional analysis. We convert g SO2 into mols SO2 using the molar mass of the elements. Then we convert mols of SO2 into mols of SO3 using the balanced equation. Once we’ve done that, we can convert mols of SO3 into grams of SO3.
You should know how to look up the molar mass of elements on the periodic table by now. Find the masses and set up the terms so they cancel like so:

Doing the math, we get 5.42g so3 as the theoretical yield. This is the most amount that you could ever get if the world was a perfect place. But alas, it isn’t and mistakes are gonna happen, so the number is going to be less than that. So the best we can do, is to figure out the percent yield that we got.
In a lab scenario, this was calculated to be 3.89 g as stated by the problem. The percent composition formula is

and plugging the numbers into it, we get:

make sure to follow the decimal/significant figure rules of your instructor, but only round at the end. My professor didn't care too much thankfully, but some professors do
First read the introduction.
Seconds look at the pictures how to build it.
Answer:
I have the same thing it's hard
Answer:
110.984 ?
i apologize if i'm wrong, you can report it if im wrong
have a good day/ night
Explanation:
The correct answer is a. This is because the pH of a solution is defined as -log10(concentration of H+ ions). An inverse logarithmic scale such as this means that a solution with a lower concentration of H+ ions will have a higher pH than one with a higher concentration. Therefore we know that the pH of the second sample will be higher than the first.
Since the logarithmic scale has the base 10, a change by 1 on the scale is a consequence of multiplication/division of the H+ concentration by a factor of 10. As the scale is inverse, this means that a decrease of concentration by factor 1000 is equivalent to increasing the pH by (1000/10) = 3.