Answer:
94.325 g
Explanation:
We'll begin by converting 350 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
350 mL = 350 mL × 1 L /1000 mL
350 mL = 0.35 L
Next, we shall determine the number of mole of KC₂H₃O₂ in the solution. This can be obtained as follow:
Volume = 0.35 L
Molarity of KC₂H₃O₂ = 2.75 M
Mole of KC₂H₃O₂ =?
Molarity = mole /Volume
2.75 = Mole of KC₂H₃O₂ / 0.35
Cross multiply
Mole of KC₂H₃O₂ = 2.75 × 0.35
Mole of KC₂H₃O₂ = 0.9625 mole
Finally, we shall determine the mass of KC₂H₃O₂ needed to prepare the solution. This can be obtained as illustrated below:
Mole of KC₂H₃O₂ = 0.9625 mole
Molar mass of KC₂H₃O₂ = 39 + (12×2) +(3×1) + (16×2)
= 39 + 24 + 3 + 32
= 98 g/mol
Mass of KC₂H₃O₂ =?
Mass = mole × molar mass
Mass of KC₂H₃O₂ = 0.9625 × 98
Mass of KC₂H₃O₂ = 94.325 g
Thus, the mass of KC₂H₃O₂ needed to prepare the solution is 94.325 g
Answer:
C.
The air pressure creates a vacuum in the straw that pulls the air into the liquid.
1. Solids
- definite volume & shape
- little energy
-vibrate in place
- very incompressible
2. Liquids
- held together yet can still flow
No, because boats and other mechanical vehicles can spill gas and oil into the freshwater. if the freshwater is scarce already, we should not contaminate it more by risking the gas and oil spills.
Answer is: standard metal cations are sodium cation (Na⁺), potassium cation (K⁺), magnesium cation (Mg²⁺) and calcium cation (Ca²⁺).
Soap<span> is a </span>salt<span> of a </span>fatty acid. When soap have sodium and potassim cations, that is toilet soap and when soap have magnesium and calcium cations, that soap is called <span>metallic soap.</span>