The angular speed can be solve using the formula:
w = v / r
where w is the angular speed
v is the linear velocity
r is the radius of the object
w = ( 5 m / s ) / ( 5 cm ) ( 1 m / 100 cm )
w = 100 per second
No the density does not change. Density is a ratio D=m/v no matter how much of a substance you have its mass will be proportional.
When doing density labs sometimes you might get different answers due to errors that are unavoidable.
A perfectly elastic<span> collision is defined as one in which there is no loss of </span>kinetic energy<span> in the collision. Therefore, we just add the kinetic energies of each system. We calculate as follows:
KE = 0.5(</span>1.0 × 10^3)(12.5 )^2 + 0.5(1.0 × 10^3)(12.5 )^2
KE = 156250 J = 1.6 x 10^5 J -------> OPTION A
Metamorphic rocks are formed by tremendous heat, great pressure, and chemical reactions. To change it into another type of metamorphic rock you have to reheat it and bury it deeper again beneath the Earth's surface.
Hope this helped! :)
Explanation:
In a vacuum (no air resistance), it doesn't. All falling objects, regardless of mass, accelerate at the same rate.
However, when air resistance is taken into account, heavier objects indeed fall faster than lighter objects, provided they have the same shape and size. For example, a lead ball falls faster than a styrofoam ball.
To understand why, first look at what factors affect air resistance:
D = ½ρv²CA
where ρ is air density,
v is velocity,
C is drag coefficient,
and A is cross sectional area.
As falling objects accelerate, they eventually reach a maximum velocity where air resistance equals weight. This is called terminal velocity.
D = W
½ρv²CA = mg
v = √(2mg/(ρCA))
If we increase m while holding everything else constant, v increases. So two objects with the same size and shape but different masses will have different terminal velocities, with the heavier object falling faster.