The force between the two objects is 19.73 nN.
<u>Explanation:
</u>
Any force acting between two objects tends to be directly proportional to the product of their masses and inversely proportional to the square of the distance between the two objects. And this kind of attraction force between two objects is termed as gravitational force.
So if we consider
and
as the masses of both objects and let d be the distance of separation of two objects. Then the force between the two objects can be determined as below:

As gravitational constant
,
= 20 kg and
= 100 kg, while d = 2.6 m, then

Thus, we get finally,

As we know, nano denoted by letter 'n' equals to 
So the force acting between two objects is 19.73 nN.
The volume of the balloon will halve
Explanation:
Boyle's law states that for an ideal gas kept at constant temperature, the pressure of the gas is proportional to its volume. Mathematically,

where
p is the gas pressure
V is the volume
The equation can also be rewritten as

And if we apply it to the gas inside the balloon in this problem (assuming its temperature is constant), we have:
is the initial pressure at sea level (the atmospheric pressure)
is the initial volume
is the final pressure
is the final volume
Substituting into the equation, we find:

Which means that the volume of the balloon will halve.
Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
Example 1, if a vernier caliper output a measurement reading of 2.13 cm, this means that: The main scale contributes the main number(s) and one decimal place to the reading
E.g. 2. 1 cm, whereby 2 is the main number and 0.1 is the one decimal place number
Explanation:
plz mark as brainliest and hope it helps you
Answer:
Explanation:
Given
Wavelength of radiation 
We know Energy of wave with wavelength
is given by

where h=Planck's constant
c=velocity of light
=wavelength of wave

Hence the energy of the wave with wavelength 784 m is