Answer:
The mechanical advantage is 3 to 1
Explanation:
A frictionless pulley with three support ropes carries equal tension on each of the ropes thus;
Tension in each pulley rope = T
Total tension in the 3 ropes = 3 × T = 3·T
Direction of the tension forces on each rope = Unidirectional
Total force provided by the 3 ropes = 3·T
Therefore, a force, T, applied at the end of the rope will result in a lifting force of 3·T
Hence, the mechanical advantage = 3·T to T which is presented as follows;

The mechanical advantage = 3 to 1.
Answer:
a = 1.68m/
Explanation:
Please kindly find the attached file for explanations
It is important because now a days we all need help from engineers
Answer:
a) v = +/- 0.323 m/s
b) x = -0.080134 m
c) v = +/- 1.004 m/s
Explanation:
Given:
a = - (0.1 + sin(x/b))
b = 0.8
v = 1 m/s @ x = 0
Find:
(a) the velocity of the particle when x = -1 m
(b) the position where the velocity is maximum
(c) the maximum velocity.
Solution:
- We will compute the velocity by integrating a by dt.
a = v*dv / dx = - (0.1 + sin(x/0.8))
- Separate variables:
v*dv = - (0.1 + sin(x/0.8)) . dx
-Integrate from v = 1 m/s @ x = 0:
0.5(v^2) = - (0.1x - 0.8cos(x/0.8)) - 0.8 + 0.5
0.5v^2 = 0.8cos(x/0.8) - 0.1x - 0.3
- Evaluate @ x = -1
0.5v^2 = 0.8 cos(-1/0.8) + 0.1 -0.3
v = sqrt (0.104516)
v = +/- 0.323 m/s
- v = v_max when a = 0:
-0.1 = sin(x/0.8)
x = -0.8*0.1002
x = -0.080134 m
- Hence,
v^2 = 1.6 cos(-0.080134/0.8) -0.6 -0.2*-0.080134
v = sqrt (0.504)
v = +/- 1.004 m/s