Explanation:
For true Strain:
step 1:
E true = Ln(1 + 0.5 ) = 0.40
Step 2:
E true = Ln(1 + 0.33 ) = 0.29
By single step process:
E true = Ln(1 + 1 ) = 0.69
total strain of step process = 0.40 + 0.29 = 0.69 units
SO TRUE STRAIN IS ADDITIVE.
Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.
Except the Table of Contents
Answer:
a)
, b) 
Explanation:
a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

The capacity ratio is:



Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that
. The efectiveness of the heat exchanger is:


The real heat transfer rate is:




The exit temperature of the hot fluid is:




The log mean temperature difference is determined herein:



The heat transfer surface area is:



Length of a single pass counter flow heat exchanger is:



b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

Answer:
Feedforward basically configured and used mainly to avoid errors in a control system entering or disrupting a control loop
Explanation:
Feedforward basically configured and used mainly to avoid errors in a control system entering or disrupting a control loop. Although Feedforward control seems to be a very attractive idea, it imposes a high responsibility on both the system developer and the operator to examine and consider mathematically the effect of disruptions on the process concerned.
example of feedforward is
Shower
which consist of following control points
Hear toilet flush (measurement)
Customize water to compensate
feedback refers to that point when water turns hot before the configuration changes