First, tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>), so if cos(<em>θ</em>) = 3/5 > 0 and tan(<em>θ</em>) < 0, then it follows that sin(<em>θ</em>) < 0.
Recall the Pythagorean identity:
sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1
Then
sin(<em>θ</em>) = -√(1 - cos²(<em>θ</em>)) = -4/5
and so
tan(<em>θ</em>) = (-4/5) / (3/5) = -4/3
The remaining trig ratios are just reciprocals of the ones found already:
sec(<em>θ</em>) = 1/cos(<em>θ</em>) = 5/3
csc(<em>θ</em>) = 1/sin(<em>θ</em>) = -5/4
cot(<em>θ</em>) = 1/tan(<em>θ</em>) = -3/4
Answer:
4.93
Step-by-step explanation:
Answer: Attached.
Step-by-step explanation:
Either solve the equations directly, or graph them and look for the point of intersection.
Answer:
1/2
Step-by-step explanation:
2/3 (2/8 + 4/8) =
First simplify what is inside the parentheses
2/8+4/8 = 6/8
Replace with 6/8
2/3 (6/8) =
Then multiply
2*6 =12
3*8 = 24
12/24
Divide top and bottom by 12
1/2
A circle is round, so no matter how many degrees it is rotated it will remain the same