Answer:
Blooms are alluring and show up in various hues and shapes to draw in pollinators who help in dust move. Most blooms have four primary parts: sepals, petals, stamens, and carpels. The stamens are the male part though the carpels are the female piece of the blossom.
Sepal: The outer parts of the flower (often green and leaf-like) that enclose a developing bud.
Petal: The parts of a flower that are often conspicuously colored.
Stamen: The pollen producing part of a flower, usually with a slender filament supporting the anther.
Anther: The part of the stamen where pollen is produced.
Pistil: The ovule producing part of a flower. The ovary often supports a long style, topped by a stigma. The mature ovary is a fruit, and the mature ovule is a seed.
Stigma: The part of the pistil where pollen germinates.
Ovary: The enlarged basal portion of the pistil where ovules are produced.
Receptacle: The part of a flower stalk where the parts of the flower are attached
the sand is more likely to be hot because it is on land and the sun can be very hot so i think it would heat the sand. but water is less likely to be heated because its water. and the sun's heat on it would still affect it yes, but not as much as sand
<span>There are five main branches of chemistry including, physical, analytical, biochemistry, organic and inorganic chemistry. I would have to say that the answer to this question is none of the above. The answers given to this multiple choice question are some of the branches of biology. If the question asked for the branches of biology then the answer would be all of the above.</span>
Answer:
Ammonia is an Arrhenius base and a Brønsted-Lowry base.
Explanation:
An Arrhenius base is any substance which, when it is dissolved in an aqueous solution, produces hydroxide (OH^-), ions in solution. An aqueous solution is a solution that has water present in it.
A Bronsted-Lowry base is a substance that accepts a proton, that is, a hydrogen ion (H^+).
Looking at the equation above, ammonia satisfies both characteristics. We can see that when ammonia is dissolved in water, hydroxide ions is produced in the solution. Hence it is an Arrhenius base. Similarly, the hydroxide ion is formed when ammonia accepts a proton. This is a characteristic of a Brownstead-Lowry base. Hence ammonia is both an Arrhenius base and a Brownstead-Lowry base.
Answer:
When two atomic orbitals come together to form two molecular orbitals, one molecular orbital will be lower in energy than the two separate atomic orbitals and one molecular orbital will be higher in energy than the separate atomic orbitals.
Explanation:
<em>Which of the following statements is TRUE? </em>
- <em>Electrons placed in antibonding orbitals stabilize the ion/molecule.</em> FALSE. Electrons in the antibonding orbitals destabilize the ion/molecule.
- <em>The total number of molecular orbitals formed doesn't always equal the number of atomic orbitals in the set.</em> FALSE. The total number of molecular orbitals is always equal to the number of atomic orbitals in the set.
- <em>When two atomic orbitals come together to form two molecular orbitals, one molecular orbital will be lower in energy than the two separate atomic orbitals and one molecular orbital will be higher in energy than the separate atomic orbitals.</em> TRUE. The orbital with lower energy will be the bonding orbital and the one with higher energy will be the antibonding orbital.
- <em>A bond order of 0 represents a stable chemical bond.</em> FALSE. A chemical bond is stable if the bond order is higher than zero.