Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
Note: This question is incomplete and lacks very important data to solve this question. But I have found the similar question which shows the profiles about which question discusses. Using the data from that question, I have solved the question.
a) We need to find the major species from A to F.
Major Species at A:
1. 
Major Species at B:
1. 
2. 
Major Species at C:
1. 
Major Species at D:
1. 
2. 
Major Species at E:
1. 
Major Species at F:
1. 
b) pH calculation:
At Halfway point B:
pH = pK
+ log[
]/[H
]
pH = pK
= 6.35
Similarly, at halfway point D.
At point D,
pH = pK
+ log [H
]/[H2
]
pH = pK
= 10.33
Hello there!
Sedimentary rocks are formed due to layers so the answer is A.
Best wishes
-HuronGirl
Answer:
C. 26.4 kJ/mol
Explanation:
The Chen's rule for the calculation of heat of vaporization is shown below:
![\Delta H_v=RT_b\left [ \frac{3.974\left ( \frac{T_b}{T_c} \right )-3.958+1.555lnP_c}{1.07-\left ( \frac{T_b}{T_c} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3DRT_b%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29-3.958%2B1.555lnP_c%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7BT_b%7D%7BT_c%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)
Where,
is the Heat of vaoprization (J/mol)
is the normal boiling point of the gas (K)
is the Critical temperature of the gas (K)
is the Critical pressure of the gas (bar)
R is the gas constant (8.314 J/Kmol)
For diethyl ether:



Applying the above equation to find heat of vaporization as:
![\Delta H_v=8.314\times307.4 \left [ \frac{3.974\left ( \frac{307.4}{466.7} \right )-3.958+1.555ln36.4}{1.07-\left ( \frac{307.4}{466.7} \right )} \right ]](https://tex.z-dn.net/?f=%5CDelta%20H_v%3D8.314%5Ctimes307.4%20%5Cleft%20%5B%20%5Cfrac%7B3.974%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29-3.958%2B1.555ln36.4%7D%7B1.07-%5Cleft%20%28%20%5Cfrac%7B307.4%7D%7B466.7%7D%20%5Cright%20%29%7D%20%5Cright%20%5D)

The conversion of J into kJ is shown below:
1 J = 10⁻³ kJ
Thus,

<u>Option C is correct</u>
Answer:
Coefficients represents no of moles while subscripts represent no of atoms.
That would be true, since most other stats include helium, calcium, etc