Answer:
2 C₄H₁₀(l) + 13 O₂(g) ⇄ 8 CO₂(g) + 10 H₂O(g)
Explanation:
When a substance burns we talk about a combustion reaction. When combustion is complete the products are carbon dioxide and water, like in this case. The equation is:
C₄H₁₀(l) + O₂(g) ⇄ CO₂(g) + H₂O(g)
First, we balance the element with the largest stoichiometric coefficient (C).
C₄H₁₀(l) + O₂(g) ⇄ 4 CO₂(g) + H₂O(g)
Then, we balance H because it is in just 1 compound on each side.
C₄H₁₀(l) + O₂(g) ⇄ 4 CO₂(g) + 5 H₂O(g)
Finally, we balance O.
C₄H₁₀(l) + 6.5 O₂(g) ⇄ 4 CO₂(g) + 5 H₂O(g)
Since we want the smallest whole numbers, we multiply all coefficients by 2.
2 C₄H₁₀(l) + 13 O₂(g) ⇄ 8 CO₂(g) + 10 H₂O(g)
Answer:
The dilution factor of protein in tube # 4 is 125. Molar concentration is 0.0088 M protein
Explanation:
The dilution factor indicates how many times is more concentrated a main solution in relationship with a diluted solution. In this case, the main solution is in tube #1. For calculating the dilution factor and molar concentration in tube #4 we need the main solution concentration which comes from next equation:
Initial volume * initial concentration = final volume * final concentration
0.5 mL * 10M = 5mL * final concentration
1.1 M = final concentration = main solution concentration
Applying the same equation for remain tubes we have 0.22 M for tube #2, 0.044 M for tube # 4 and 0.0088 for tube # 4.
Dilution factor = Main solution concentration/tube 4 concentration
Dilution factor = 1.1/0.0088 = 125
I hope my answer helps you
When publishing experimental results, it is always advisable to have your peer review those results. This peer can confirm the results that you got and thus they will be more reliable.
Also, you will be sure that what what you are publishing is correctly presented as it is always good to have a fresh eya to double-check what is written.
<h3>
Answer:</h3>
380,520 Joules
<h3>
Explanation:</h3>
- Quantity of heat,Q is calculated by multiplying the mass, m of a substance by specific heat capacity, c of the substances and the change in temperature, Δt.
That is;
Q = m×c×Δt
In the question above;
Mass of glass is 15.1 kg
Change in temperature = 45°C - 15 °C
= 30°C
Specific heat capacity of glass = 840 J/kg/°C
Therefore;
Quantity of heat, Q = 15.1 kg × 840 J/kg/°C × 30°C
= 380,520 Joules
Hence, it takes 380,520 Joules to heat up 15.1 kg of glass from 15°C to 45°C.
Answer:
The correct answer is "430 kJ/kg". A further explanation is given below.
Explanation:
The given values are:
T₁ = 400 k
T₂ = 800 k
The average temperature will be:
= 
= 
= 
From table,
At 600 k the
will be = 1.075
Now,
⇒ The specific enthalpy = 
⇒ 
⇒ 