1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuri [45]
3 years ago
12

What is oxidation number on Ni in the next compound K2[NiBr6] ???

Chemistry
1 answer:
ziro4ka [17]3 years ago
4 0

Explanation:

The oxidation number of Ni is +4

You might be interested in
1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?
Sedbober [7]
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
5 0
3 years ago
Read 2 more answers
which of the following describes a similarity between a liquid and gas A. both are forms of heat are used to warm objects. C. bo
Leona [35]

Answer:

It's A

Explanation:

Liquid can heat things and so can steam.

8 0
3 years ago
I. Witch direction does the electric field point at a position directly west of a positive charge
RUDIKE [14]

Answer:

The answer is North

Explanation:

The direction of the field is taken to be the direction of the force it would exert on a positive test charge.

5 0
3 years ago
Which of the following is most likely a chemical reaction?
masha68 [24]

Answer:

Two solid powders are combined and shaken. The substances form a mixture.

4 0
3 years ago
2. Some nitrogen at a pressure of 35.75 p.s.i is in a 100 L container. If the container's volume is reduced to 2250 ml then what
elena-s [515]

Answer:

1455.6

Explanation: you first convert 2250ml to l by dividing by 1000 so you get 2.25l then you use Boyles law which is p1v1=p2v2 then insert values

35.75*100=p2*2.25 then divide both sides by 2.25 then you get 1455.6

4 0
3 years ago
Other questions:
  • How do you convert 3.9mL to hL
    11·1 answer
  • Which statement about spontaneous and nonspontaneous processes is correct? Spontaneous processes are favored by a decrease in H,
    13·2 answers
  • The mass of a proton is 1.00728 amu andthat of a neutron is 1.00867 amu. What is the binding energy pernucleon (in J) of a Co nu
    10·1 answer
  • What determines the order of the elements in the modern periodic table ?
    7·1 answer
  • The first plants to grow after a fire are called?
    8·2 answers
  • Is anyone good at chemistry if so can someone help me please ?<br><br> (NO LINKS)
    14·1 answer
  • What are two things that interact that determine if there is a phase change or not HELP
    15·1 answer
  • Find the mass of 1.59 mol of NH3.<br> Please show the work if you can!
    15·1 answer
  • When two atoms of element Y combine, Y2 molecule is formed.
    15·1 answer
  • What is the solubility of NaCI in water at 0 degrees Celsius
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!