Answer:
0.1313 g.
Explanation:
- It is known that at STP, 1.0 mole of ideal gas occupies 22.4 L.
- Suppose that hydrogen behaves ideally and at STP conditions.
<u><em>Using cross multiplication:</em></u>
1.0 mol of hydrogen occupies → 22.4 L.
??? mol of hydrogen occupies → 1.47 L.
∴ The no. of moles of hydrogen that occupies 1.47 L = (1.0 mol)(1.47 L)/(22.4 L) = 6.563 x 10⁻² mol.
- Now, we can get the no. of grams of hydrogen in 6.563 x 10⁻² mol:
<em>The no. of grams of hydrogen = no. of hydrogen moles x molar mass of hydrogen</em> = (6.563 x 10⁻² mol)(2.0 g/mol) = <em>0.1313 g.</em>
The atomic mass number does<span> not change because a </span>beta<span> particle has a much smaller </span>mass<span> than the </span>atom<span>. The </span>atomic number<span> goes up because a neutron has turned into an extra proton. </span>Beta decay<span> is fundamentally different from alpha </span>decay<span>. An alpha particle is made of two protons and two neutrons.</span>
Answer:
A decrease in temperature would decrease kinetic energy, therefore decreasing collisions possible.
Explanation:
A gas at a fixed volume is going to have collisions automatically. If you decrease the temperature (same thing as decreasing kinetic energy) you are cooling down the molecules in the container which gives them less energy and "relaxes" them. This decrease in energy causes them to move around much slower and causing less collisions, at a much slower rate. In a perfect world, these collisions do not slow down the molecule but we know that they do, just a very very small unmeasurable amount.
Answer:
2-4 mm height of capillary tube.
Explanation:
Sample should be around 2-4 mm in height.
It should be packed well so that it does not have air packets that caues the lowering of melting point.
If you take greater amount, then there will be needed more heat, resulting a wide range of melting point.
Answer:
turtle
Explanation:
they are slow and they take there time