The thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.
<h3>
Thickness of the aluminum</h3>
The thickness of the aluminum can be determined using from distance of closest approach of the particle.

where;
- Z is the atomic number of aluminium = 13
- e is charge
- r is distance of closest approach = thickness of aluminium
- k is Coulomb's constant = 9 x 10⁹ Nm²/C²
<h3>For 2.5 MeV electrons</h3>

<h3>For 2.5 MeV protons</h3>
Since the magnitude of charge of electron and proton is the same, at equal kinetic energy, the thickness will be same. r = 1.5 x 10⁻¹⁴ m.
<h3>For 10 MeV alpha-particles</h3>
Charge of alpah particle = 2e

Thus, the thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.
Learn more about closest distance of approach here: brainly.com/question/6426420
78950W the answer
Explanation:
A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the motor efficiency excluding field and stator losses, is 95%and X=2.5ohms. calculate the mechanical power developed, the Armature current, back e.m.f, power angle and maximum or pull out torque of the motor
A 75- kw, 3-, Y- connected, 50-Hz 440- V cylindrical synchronous motor operates at rated condition with 0.8 p.f leading. the motor efficiency excluding field and stator losses, is 95%and X=2.5ohms. calculate the mechanical power developed, the Armature current, back e.m.f, power angle and maximum or pull out torque of the motor
Answer:
Java is called portable because you can compile a java code which will spew out a byte-code, and then you run that code with Java Virtual Machine. Java Virtual Machine is like an interpreter, which reads the compiled byte-code and runs it. So first of all, you need to install the JVM on the system you want.
Explanation:
Answer:
a) 

b)

Explanation:
Given that:
diameter d = 12 in
thickness t = 0.25 in
the radius = d/2 = 12 / 2 = 6 in
r/t = 6/0.25 = 24
24 > 10
Using the thin wall cylinder formula;
The valve A is opened and the flowing water has a pressure P of 200 psi.
So;




b)The valve A is closed and the water pressure P is 250 psi.
where P = 250 psi






The free flow body diagram showing the state of stress on a volume element located on the wall at point B is attached in the diagram below