Answer:
h = 287.1 m
Explanation:
the density of mercury \rho =13570 kg/m3
the atmospheric pressure at the top of the building is

the atmospheric pressure at bottom


we have also

1.18*9.81*h = (100.4 -97.08)*10^3
h = 287.1 m
Where are the statements then bbs lol
Answer:
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
Explanation:
We are given;
T∞ = 70°C.
Inner radii pipe; r1 = 6cm = 0.06 m
Outer radii of pipe;r2 = 6.5cm=0.065 m
Electrical heat power; Q'_s = 300 W
Since power is 300 W per metre length, then; L = 1 m
Now, to the heat flux at the surface of the wire is given by the formula;
q'_s = Q'_s/A
Where A is area = 2πrL
We'll use r2 = 0.065 m
A = 2π(0.065) × 1 = 0.13π
Thus;
q'_s = 300/0.13π
q'_s = 734.56 W/m²
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
Answer:
Actualmente estoy trabajando en una pregunta diferente en este momento.
Explanation:
Actualmente estoy trabajando en una pregunta diferente en este momento.