Answer:
5.73 Liters
Explanation:
Pressure decreases => Volume increases (Boyles Law)
V(final) = 2.75L (750Torr/360Torr) = 5.73 Liters
<h3>
Answer:</h3>
78.34 g
<h3>
Explanation:</h3>
From the question we are given;
Moles of Nitrogen gas as 2.3 moles
we are required to calculate the mass of NH₃ that may be reproduced.
<h3>Step 1: Writing the balanced equation for the reaction </h3>
The Balanced equation for the reaction is;
N₂(g) + 3H₂(g) → 2NH₃(g)
<h3>Step 2: Calculating the number of moles of NH₃</h3>
From the equation 1 mole of nitrogen gas reacts to produce 2 moles of NH₃
Therefore, the mole ratio of N₂ to NH₃ is 1 : 2
Thus, Moles of NH₃ = Moles of N₂ × 2
= 2.3 moles × 2
= 4.6 moles
<h3>Step 3: Calculating the mass of ammonia produced </h3>
Mass = Moles × molar mass
Molar mass of ammonia gas = 17.031 g/mol
Therefore;
Mass = 4.6 moles × 17.031 g/mol
= 78.3426 g
= 78.34 g
Thus, the mass of NH₃ produced is 78.34 g
Answer:
They are:
H2, N2, O2, F2, Cl2, Br2, and I2.
Note: whether the element At molecule is monoatomic or diatomic is incredibly arguable. While some say it exists as diatomic because it is a halogen like bromine, iodine etc, At is in fact extremely unstable and no one has ever really studied the molecules on it, so, when others say it is monoatomic, this is also based on calculations. But the other 7 elements listen above is for sure diatomic.
Explanation:
The given data is as follows.


Now, according to Michaelis-Menten kinetics,
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
where, S = substrate concentration =
M
Now, putting the given values into the above formula as follows.
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
![V_{o} = 6.8 \times 10^{-10} \mu mol/min \times [\frac{10.4 \times 10^{-6} M}{(10.4 \times 10^{-6}M + 5.2 \times 10^{-6} M)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%206.8%20%5Ctimes%2010%5E%7B-10%7D%20%5Cmu%20mol%2Fmin%20%5Ctimes%20%5B%5Cfrac%7B10.4%20%5Ctimes%2010%5E%7B-6%7D%20M%7D%7B%2810.4%20%5Ctimes%2010%5E%7B-6%7DM%20%2B%205.2%20%5Ctimes%2010%5E%7B-6%7D%20M%29%7D%5D)

= 
This means that
would approache
.
Answer:
Calculating Atomic Mass
Change each percent abundance into decimal form by dividing by 100. Multiply this value by the atomic mass of that isotope. Add together for each isotope to get the average atomic mass.
Explanation:
have a nice day