Answer: he did travel 15 meters.
Explanation:
We have the data:
Acceleration = a = 1.2 m/s^2
Time lapes = 3 seconds
Initial speed = 3.2 m/s.
Then we start writing the acceleration:
a(t) = 1.2 m/s^2
now for the velocity, we integrate over time:
v(t) = (1.2 m/s^2)*t + v0
with v0 = 3.2 m/s
v(t) = (1.2 m/s^2)*t + 3.2 m/s
For the position, we integrate again.
p(t) = (1/2)*(1.2 m/s^2)*t^2 + 3.2m/s*t + p0
Because we want to know the displacementin those 3 seconds ( p(3s) - p(0s)) we can use p0 = 0m
Then the displacement at t = 3s will be equal to p(3s).
p(3s) = (1/2)*(1.2 m/s^2)*(3s)^2 + 3.2m/s*3s = 15m
grow alot of plants that's help to make more h2o
Answer:
50
Explanation:
Use the Pythagorean theorem to find the length of the diagonal, or the hypotenuse of an imaginary triangle. 30^2 + 40^2 = 2500, which is 50^2. So, the magnitude is 50.
Brainliest, please :)
Answer:
Capacitive Reactance is 4 times of resistance
Solution:
As per the question:
R = 
where
R = resistance

f = fixed frequency
Now,
For a parallel plate capacitor, capacitance, C:

where
x = separation between the parallel plates
Thus
C ∝ 
Now, if the distance reduces to one-third:
Capacitance becomes 3 times of the initial capacitace, i.e., x' = 3x, then C' = 3C and hence Current, I becomes 3I.
Also,

Also,
Z ∝ I
Therefore,




Solving the above eqn:

The movement of air flows from high pressure to low pressure