Ecell = E°cell - RT/vF * lnQ
R is the gas constant: 8.3145 J/Kmol
T is the temperature in kelvin: 273.15K = 0°C, 25°C = 298.15K
v is the amount of electrons, which in your example seems to be six (I'm not totally sure)
F is the Faradays constant: 96485 J/Vmol (not sure about the mol)
Q is the concentration of products divided by the concentration of reactants, in which we ignore pure solids and liquids: [Mg2+]³ / [Fe3+]²
Standard conditions is 1 mol, at 298.15K and 1 atm
To find E°cell, you have to look up the reduction potensials of Fe3+ and Mg2+, and solve like this:
E°cell = cathode - anode
Cathode is where the reduction happens, so that would be the element that recieves electrons. Anode is where the oxidation happens, so that would be the element that donates electrons. In your example Fe3+ recieves electrons, and should be considered as cathode in the equation above.
When you have found E°cell, you can just solve with the numbers I gave you.
Rocks and minerals are usually composed of two or more minerals
Hey there!
When two or more substances combine, they create one or more new substances, which sometimes have different molecular structures from the original substances, meaning they absorb and radiate light in different ways, leading to a color change.
Hope this helps! :)
An ionic<span> crystal consists of </span>ions<span> bound together by electrostatic attraction. The arrangement of </span>ions<span> in a regular, geometric structure is called a crystal lattice. Examples of such </span>crystals<span> are the alkali halides, which include: potassium fluoride </span>