Answer:
86.3 g of N₂ are in the room
Explanation:
First of all we need the pressure from the N₂ in order to apply the Ideal Gases Law and determine, the moles of gas that are contained in the room.
We apply the mole fraction:
Mole fraction N₂ = N₂ pressure / Total pressure
0.78 . 1 atm = 0.78 atm → N₂ pressure
Room temperature → 20°C → 20°C + 273 = 293K
Let's replace data: 0.78 atm . 95L = n . 0.082 . 293K
(0.78 atm . 95L) /0.082 . 293K = n
3.08 moles = n
Let's convert the moles to mass → 3.08 mol . 28g /1mol = 86.3 g
Answer:
A. a system that can be affected by the outside environment, by an exchange of matter or energy
According to the illustration, the vanadium (V) oxide would be a catalyst.
<h3>What are catalysts?</h3>
Catalysts are substances that are utilized in reactions that are not themselves consumed in reactions but only speed up the rate of the reactions.
Catalysts speed up the rate of reactions by lowering the activation energy of the reactants.
Sulfur dioxide reacts with oxygen to produce sulfur trioxide. The vanadium (v) oxide is not consumed in the reaction. Thus it only serves as a catalyst.
More on catalysts can be found here: brainly.com/question/12260131
#SPJ1
Answer:
See explanation
Explanation:
Coal is primarily used for electricity generation. The burning of coal leads to emission of gases such as oxides of carbon, oxides of sulphur, oxides of nitrogen and water vapour. All these go straight into the atmosphere.
Petroleum is primarily used as transportation fuels. The burning of petroleum oils mostly leads to the emission of oxides of carbon and sulphur together with water vapour into the atmosphere.