Answer:
7.328m/s
Explanation:
Given parameters:
height of table = 0.68m
final velocity of the ball = 6m/s
Unknown:
Initial velocity of ball = ?
Solution:
To solve this problem, we are going to employ the appropriate motion equation.
We must understand that this fall occurs in the presence of gravity;
V = U + 2gH
Where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height of the pool table
Since U is the unknown, let us make it the subject of the expression;
U = V - 2gH
U = 6 - (2 x 9.8 x 0.68) = 7.328m/s(deceleration)
Represent the motion in the number line.
Movement to the east is movement to the negative side. Movement to the west is movement to the positive side.
Total displacement = -680m + 430m - 620m = -870m
Total displacement = 860m to the east.
Answer:
Vertical velocity decreases.
Explanation:
The motion of the ball is a projectile ball, which consists of two independent motions:
- a horizontal motion, with constant velocity
- a vertical motion, with constant acceleration g=9.8 m/s^2 towards the ground
In the vertical motion, there is a constant acceleration directed downward: this means that the vertical velocity decreases as the ball goes higher. In fact, it decreases following the equation

And it decreases until the ball reaches its maximum height, then it starts increasing again.
The part that moves are called anti-nodes. The stationary pars are nodes
Solution :
When the spacecraft is at halfway point, the distance from the Earth as well as Mars are same. We have to account the masses of the planets. The gravitational force that is exerted by the Earth is greater because of its combined mass with the space probe.
The mass of Earth is greater than the mass of Mars. Therefore, the force of Earth is more than Mars.