Answer:
0.08kg/s
Explanation:
For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.
The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.
finally you use the two previous equations to make a system and find the mass flows
I attached procedure
Explanation:
Yes Diesel engine have problem of knocking.
We know that knocking is phenomenon in which suddenly large amount of power generates this large amount of power will cause the failure of diesel engine.
Actually when one set of fuel inject inside the cylinder to burn with already compressed air (in general up to 10-15 bar) then this fuel does not burn complete and accumulate inside the cylinder.After that second set of fuel inject inside the cylinder then that one set of fuel burns with second set of fuel and produces large amount of sudden power for engine and causes the breaks in the crank or connecting rod of engine.it leads to damage the engine.
Answer:
The pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its original value.
Explanation:
For a fully developed laminar flow in a circular pipe, the flowrate (volumetric) is given by the Hagen-Poiseulle's equation.
Q = π(ΔPR⁴/8μL)
where Q = volumetric flowrate
ΔP = Pressure drop across the pipe
μ = fluid viscosity
L = pipe length
If all the other parameters are kept constant, the pressure drop across the circular pipe is directly proportional to the viscosity of the fluid flowing in the pipe
ΔP = μ(8QL/πR⁴)
ΔP = Kμ
K = (8QL/πR⁴) = constant (for this question)
ΔP = Kμ
K = (ΔP/μ)
So, if the viscosity is halved, the new viscosity (μ₁) will be half of the original viscosity (μ).
μ₁ = (μ/2)
The new pressure drop (ΔP₁) is then
ΔP₁ = Kμ₁ = K(μ/2)
Recall,
K = (ΔP/μ)
ΔP₁ = K(μ/2) = (ΔP/μ) × (μ/2) = (ΔP/2)
Hence, the pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its value.
Hope this Helps!!!
Q:What velocity does the boy attain if he throws the bricks one at a time?
Answer:Linear velocity since it moves back and firth and does not rotate like angular velocity.
Answer:
Basically there are two principal differences between the convection and conduction heat transfer
Explanation:
The conduction heat transfer is referred to the transfer between two solids due a temperature difference, while for, the convective heat transfer is referred to the transfer between a fluid (liquid or gas) and a solid. Also, they used different coefficients for its calculation.
We can include on the explanation that conduction thermal transfer is due to temperature difference, while convection thermal transfer is due to density difference.