Some examples of stable system are:
1) functions of sine
2) DC
3) signum
4) unit step
5) cosine.
Happy Studying! ^^
The work done by the centripetal force during om complete revolution is 401.92 J.
<h3>What is centripetal force?</h3>
Centripetal force is a force that acts on a body undergoing a circular motion and is directed towards the center of the circle in which the body is moving.
To Calculate the work done by the centripetal force during one complete revolution, we use the formula below.
Formula:
- W = (mv²/r)2πr
- W = 2πmv²................... Equation 1
Where:
- W = Work done by the centripetal force
- m = mass of the ball
- v = velocity of the ball
- π = pie
From the question,
Given:
- m = 16 kg
- v = 2 m/s
- π = 3.14
Substitute these values into equation 1
Hence, The work done by the centripetal force during om complete revolution is 401.92 J.
Learn more about centripetal force here: brainly.com/question/20905151
Answer:
c. V = 2 m/s
Explanation:
Using the conservation of energy:

so:
Mgh = 
where M is the mass, g the gravity, h the altitude, I the moment of inertia of the pulley, W the angular velocity of the pulley and V the velocity of the mass.
Also we know that:
V = WR
Where R is the radius of the disk, so:
W = V/R
Also, the moment of inertia of the disk is equal to:
I = 
I = 
I = 10 kg*m^2
so, we can write the initial equation as:
Mgh = 
Replacing the data:
(5kg)(9.8)(0.3m) = 
solving for V:
(5kg)(9.8)(0.3m) = 
V = 2 m/s
Answer:
a) 32.58 m/s²
b) 161.84 m/s
Explanation:
Initial velocity = u = 0
Final velocity = v = 145 m/s
Time taken = t = 4.45 s
s = Displacement of dragster = 402 m
a = Acceleration


The final velocity is greater than the velocity used to find the average acceleration due to the gear changes. The first gear in a dragster has the most amount of toque which means the acceleration will be maximum. The final gears have less torque which means the acceleration is lower here. The final gears have less acceleration but can spin faster which makes the dragster able to reach higher speeds but slowly.