Answer:
1. The car which is twice as massive as the other will have twice potential energy.
Explanation:
The potential energy of an object is given by:

where
m is the mass of the object
g is the gravitational acceleration
h is the height of the object measured to some reference level
In this problem, we have two cars at same elevation (= same h in the formula) but one car has twice the mass of the second car. Calling m the mass of one car and 2m the mass of the second car, we have:
- Potential energy of the first car:

- potential energy of the second car:

So, the car which is twice as massive as the other will have twice potential energy.
5.38
21 divided by 3.9 is 5.38 and the equation for acceleration is change in velocity divided by time
A typical wheel used on a roller coaster is constructed by taking an aluminum hub and bonding a polyurethane tire to the hub's outside diameter. This entire “wheel assembly” is then connected to the axle through a bearing.
Answer:
1/3
Explanation:
We can solve the problem by using the lens equation:

where
f is the focal length
p is the distance of the object from the lens
q is the distance of the image from the lens
Here we have a divering lens, so the focal length must be taken as negative (-f). Moreover, we know that the object is placed at a distance of twice the focal length, so

So we can find q from the equation:

Now we can find the magnification of the image, given by:

Answer: The physics of evolution had made the moon like it is today....Please watch this video from you tube about the evolution of the moon.
Explanation:
https://youtu.be/UIKmSQqp8wY