<em>A simple metallic band model is proposed for the transition metal mono antimonides, by analogy to the transition metals.</em>
Answer:
Without this slack, a locomotive might simply sit still and spin its wheels. The loose coupling enables a longer time for the entire train to gain momentum, requiring less force of the locomotive wheels against the track. In this way, the overall required impulse is broken into a series of smaller impulses. (This loose coupling can be very important for braking as well).
Explanation:
Answer : The cell potential for this cell 0.434 V
Solution :
The balanced cell reaction will be,

Here copper (Cu) undergoes oxidation by loss of electrons, thus act as anode. silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
First we have to calculate the standard electrode potential of the cell.
![E^o_{[Cu^{2+}/Cu]}=0.34V](https://tex.z-dn.net/?f=E%5Eo_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D0.34V)
![E^o_{[Ag^{+}/Ag]}=0.80V](https://tex.z-dn.net/?f=E%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D0.80V)
![E^o=E^o_{[Ag^{+}/Ag]}-E^o_{[Cu^{2+}/Cu]}](https://tex.z-dn.net/?f=E%5Eo%3DE%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D-E%5Eo_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D)

Now we have to calculate the concentration of cell potential for this cell.
Using Nernest equation :
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Cu^{2+}][Ag]^2}{[Cu][Ag^+]^2}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BCu%5E%7B2%2B%7D%5D%5BAg%5D%5E2%7D%7B%5BCu%5D%5BAg%5E%2B%5D%5E2%7D)
where,
n = number of electrons in oxidation-reduction reaction = 2
= ?
Now put all the given values in the above equation, we get:


Therefore, the cell potential for this cell 0.434 V
C is true, and just one of those has as much mass as about 1,840 electrons.
1 Amp = 1 Coulomb/sec
1 Coulomb/sec = 6.25*10^18 electrons/sec
Therefore,
5.0 A = 5 C/s = 5*6.25*10^18 = 3.125*10^19 e/s
In 10 second, number of electrons are calculated as;
Number of electrons through the device = 3.125*10^19*10 = 3.125*10^20 electrons