Answer:
The time he can wait to pull the cord is 41.3 s
Explanation:
The equation for the height of the skydiver at a time "t" is as follows:
y = y0 + v0 · t + 1/2 · g · t²
Where:
y = height at time "t".
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).
First, let´s calculate how much time will it take for the skydiver to hit the ground if he doesn´t activate the parachute.
When he reaches the ground, the height will be 0 (placing the origin of the frame of reference on the ground). Then:
y = y0 + v0 · t + 1/2 · g · t²
0 m = 15000 m + 0 m/s · t - 1/2 · 9.8 m/s² · t²
0 m = 15000 m - 4.9 m/s² · t²
-15000 m / -4.9 m/s² = t²
t = 55.3 s
Then, if it takes 4.0 s for the parachute to be fully deployed and the parachute has to be fully deployed 10.0 s before reaching the ground, the skydiver has to pull the cord 14.0 s before reaching the ground. Then, the time he can wait before pulling the cord is (55.3 s - 14.0 s) 41.3 s.
The maximum acceleration the truck can have so that the refrigerator does not tip over is 4.15 m/s².
<h3>What will be the maximum acceleration of the truck to avoid tipping over?</h3>
The maximum acceleration is obtained by taking clockwise moments about the tipping point of rotation.
Clockwise moment = Anticlockwise moment
Ft * 1.58 m = F * 0.67 m
where
- Ft is tipping force = mass * acceleration, a
- F is weight = mass * acceleration due to gravity, g
m * a * 1.58 = m * 9.81 * 0.67
a = 4.15 m/s²
The maximum acceleration the truck can have so that the refrigerator does not tip over is 4.15 m/s².
In conclusion, the acceleration of the truck is found by taking moments about the tipping point.
Learn more about moments of forces at: brainly.com/question/27282169
#SPJ1
Answer:
Light refracts when its speed changes as it enters a new medium.
Explanation:
Bending of light wave while it entering a medium with different speed is called refraction of light. Light passing from a faster medium to the slower medium bends the light rays toward the normal to boundary between two media. The amount of the bending of light depends on refractive index of the two media which is described by the Snell's Law. The angle of incidence is not equal to angle of refraction. Rainbow is caused but this refraction phenomena. Also Refraction is used in magnifying glasses, prism and lenses
<span>From the point of view of the astronaut, he travels between planets with a speed of 0.6c. His distance between the planets is less than the other bodies around him and so by applying Lorentz factor, we have 2*</span>√1-0.6² = 1.6 light hours. On the other hand, from the point of view of the other bodies, time for them is slower. For the bodies, they have to wait for about 1/0.6 = 1.67 light hours while for him it is 1/(0.8) = 1.25 light hours. The remaining distance for the astronaut would be 1.67 - 1.25 = 0.42 light hours. And then, light travels in all frames and so the astronaut will see that the flash from the second planet after 0.42 light hours and from the 1.25 light hours is, 1.25 - 0.42 = 0.83 light hours or 49.8 minutes.