Answer:
It only depends on the vertical component
Explanation:
Hello!
The horizontal component will tell you how much you travel in that direction.
You could have a large horizontal velocity, but if the vertical velocity is zero, you will never be out of the ground. Similarly, you could have a zero horizontal velocity, but if you have a non-zero vertical velocity you will be some time off the ground. This time can be calculated by two means, one is using the equation of motion (position as a function of time) and the other using the velocity as a fucntion of time.
For the former you must find the time when the position is zero.
Lets consider the origin of teh coordinate system at your feet
y(t) = vt - (1/2)gt^2
We are looking for a time t' for which y(t')=0
0 = vt' - (1/2)gt'^2
vt' = (1/2)gt'^2
The trivial solution is when t'=0 which is the initial position, however we are looking for t'≠0, therefore we can divide teh last equation by t'
v = (1/2)gt'
Solving for t'
t' = (2v/g)
A car acting as an object in front of a biconvex lens between F and 2 F on the object side of the lens. There is a light ray parallel to the principal axis that is bent through F on the image side of the lens. There is a ray straight through the center of the lens. The rays intersect below the x axis further than 2 F away from the lens and farther from the principal axis than the object is tall.
<u> The image produced by the lens is (b) inverted and real</u>
Explanation:
A real image occurs where the rays converge.
Real images can be produced both by the concave mirrors or converging lenses, but the condition is that the object of consideration is always placed far away from the mirror or the lens than the focal point, and thus the real image produced is inverted.
A car acting as an object in front of a biconvex lens between F and 2 F on the object side of the lens. There is a light ray parallel to the principal axis that is bent through F on the image side of the lens. There is a ray straight through the center of the lens. The rays intersect below the x axis further than 2 F away from the lens and farther from the principal axis than the object is tall.
<u> The image produced by the lens is (b) inverted and real</u>
The law of conservation of energy is a law that states that "energy cannot be created or destroyed, only changed" this means that you can't create it or destroyed as in, if you burn wood, you have released the energy. you haven't destroyed it, you have just released it
Answer:
The Rutherford model was made by Ernest Rutherford, to describe a atom. That is a brief explanation
Explanation:
A reasonable hypothesis would be that, nothing changes with can A (no expansion at all), and Can C is expanding, but Can B is expanding even faster than Can C. (I don't know, if this hypothesis is correct though)