To determine the velocity of the roller coaster as it moves down, we use the kinematic equation which is expressed as 2gy = vf^2 - v0^2 where g is the gravitational acceleration, y is the elevation of the roller coaster, vf and vo are the final and initial velocity. We calculate as follows:
2gy = vf^2 - v0^2
Since it starts at rest, v0 is zero.
2gy = vf^2
vf = √2gy
vf = √2(9.8)(101)
vf = 44.5 m/s
It sounds as though the two people are standing in front of the boat on opposite sides of it, so that they both make an angle of 30.0° with the axis of the boat, as in the attached free body diagram (ignoring the force of buoyancy and the weight of the boat).
By Newton's second law, the net vertical force is
∑ <em>F</em> = <em>P</em>₁ sin(60.0°) + <em>P</em>₂ sin(120.0°) - <em>R</em> = 0
where upward is positive and downward is negative, and the right side is 0 because the boat moves with constant velocity and thus zero acceleration.
We're told that <em>P</em>₁ = <em>P</em>₂ = 600 N, and we know sin(60°) = sin(120°), so the above reduces to
<em>R</em> = 2 <em>P</em> sin(60.0°) = 2 (600 N) sin(60.0°) ≈ 1040 N
D. Adding another base pair will re-arrange your DNA sequences and cause an insertion mutation. This will make your codons group of differently, and possibly give you a BAD mutation. However, sometimes the codons still make the same proteins as its supposed to, the mutation will NOT affect you.
Example:
THE BIG FAT CAT ATE THE RAT
Now, if i were to add a letter (X) to this and make the letters group up in three aka the codons:
THE XBI GFA TCA TAT ETH ERA T
As you can you can see, adding a base pair in a DNA insertion will usually have a negative effect, specifically a insertion mutation.
Answer:
Explanation:
The potential difference between one side of the wire causes the electric field inside the wire (causes the electrons to flow). However, inside the wire, it is still neutral. The electrons are just moving, the wire is not gaining or losing electrons.
Answer:
the average kinetic energy of the 10 molecules is 10 J.
Explanation:
Given;
energy on one molecule in motion, E = 100 J
number of molecules, n = 10
(A) The average kinetic energy of the 10 molecules
since the remaining 9 molecules are at rest, their kinetic energy = 0

Therefore, the average kinetic energy of the 10 molecules is 10 J.