A sample of an ideal gas has a volume of 2.30 L at 281 K and 1.02 atm. 1.76 atm is the pressure when the volume is 1.41 L and the temperature is 298 K.
<h3>What is Combined Gas Law ?</h3>
This law combined the three gas laws that is (i) Charle's Law (ii) Gay-Lussac's Law and (iii) Boyle's law.
It is expressed as

where,
P₁ = first pressure
P₂ = second pressure
V₁ = first volume
V₂ = second volume
T₁ = first temperature
T₂ = second temperature
Now put the values in above expression we get



P₂ = 1.76 atm
Thus from the above conclusion we can say that A sample of an ideal gas has a volume of 2.30 L at 281 K and 1.02 atm. 1.76 atm is the pressure when the volume is 1.41 L and the temperature is 298 K.
Learn more about the Combined gas Law here: brainly.com/question/13538773
#SPJ4
The double replacement reaction
<h3>Further explanation</h3>
Given
Reaction if Na₂S + HCl
Required
Type of reaction
Solution
The double replacement reaction occurs when there is a displacement of the cations and anions of the reactants involved in the reaction to form two new compounds.
The general formula for this reaction :
AB + CD ⇒ AD + CB
At the bottom of the reaction, it is shown the number of atoms of each compound in the reactants and products which indicates the application of <em>the law of conservation of mass</em>, that the number of atoms in the reactants will be the same as the number of atoms in the product, so the reaction is said to be in a balanced state.
Hello, I would like to help you, but I really don't understand the question
Answer by YourHope:
Hi! :)
Which definition of "coarse" matches its use in the phrase "coarse focus?"
A) "rough in texture"
Have a BEAUTIFUL day~
At STP (standard temperature and pressure conditions), 1 mol of any gas occupies 22.4 L
This rule is applied to O₂
22.4 L volume occupied by 1 mol
Therefore 83.4 L occupied by - 1/ 22.4 x 83.4 = 3.72 mol
stoichiometry of O₂ to H₂O is 1:2
then the number of moles of water produced - 3.72 mol x 2= 7.44 mol
mass of water produced - 7.44 mol x 18.01 g/mol = 134.1 g
correct answer is D