Answer:
The coefficient before potassium (K) balances this chemical equation is 2.
Explanation:
_K +Cl₂ → 2KCl
K =1 ; Cl =2
K=1 × 2 = 2
Cl = 1 × 2 = 2
2 K +Cl₂ = 2 KCl
Answer:
This is known as the coefficient factor
Explanation:The balanced equation makes it possible to convert information about one reactant or product to quantitative data about another element.
Answer:
%H = 6.72 %
Explanation:
Percent composition of an element is the total mass of that element divided by the molecular mass of compound (or molecular mass) of which it is present in.
So,
Percent composition of Hydrogen will be given as,
%H = Total mass of H / Molecular Mass of Acetic Acid × 100
So,
Total Mass of H = 1.01 × 4 = 4.04 g
Molecular Mass of Acetic acid = 60.052 g/mol
Putting values in above formula,
%H = 4.04 g/mol ÷ 60.052 g/mol × 100
%H = 6.72 %
Explanation:
As it is known that there are two types of properties. These are extensive and intensive.
Extensive properties : Properties that depend on the size or amount of system. For example, mass, volume etc.
Intensive properties : Properties that do not depend on the size or amount of system. For example, density, melting point, specific heat capacity etc.
On the basis of these properties water and ethanol are distinguished as follows.
- Density of water is 997 kg/
whereas density of ethanol is 789 kg/
. Both these liquids can be separated by intensive properties. - Melting point of water is zero degree celsius whereas melting point of ethanol is -114.1 degree celsius.
- Specific heat capacity of water is 4.184
whereas specific heat capacity of ethanol is 2.46
. - Mass of the given liquids cannot be differentiated because they will keep on changing depending on the quantity required. As mass is an extensive property, therefore, it is difficult to differentiate between the two liquids.
Thus, we can conclude that properties like density, melting point, specific heat capacity can help a chemist distinguish between ethanol and water.
Answer:
According to Boyle's Law, an inverse relationship exists between pressure and volume. ... The relationship for Boyle's Law can be expressed as follows: P1V1 = P2V2, where P1 and V1 are the initial pressure and volume values, and P2 and V2 are the values of the pressure and volume of the gas after change.
<em>Hope that helps! :)</em>
<em></em>
<em>-Aphrodite</em>
Explanation: