Answer:
Two of Einstein’s influential ideas introduced in 1905 were the theory of special relativity and the concept of a light quantum, which we now call a photon. Beyond 1905, Einstein went further to suggest that freely propagating electromagnetic waves consisted of photons that are particles of light in the same sense that electrons or other massive particles are particles of matter. A beam of monochromatic light of wavelength \lambda (or equivalently, of frequency f) can be seen either as a classical wave or as a collection of photons that travel in a vacuum with one speed, c (the speed of light), and all carrying the same energy, {E}_{f}=hf. This idea proved useful for explaining the interactions of light with particles of matter.
Answer:
Dirty bomb
Explanation:
Among the nuclear bomb One type is a "dirty bomb." It combines a conventional explosive such as the dynamite with radioactive material which can spread when the system explodes. The explosion is releasing "dirty" bits of radioactive particles which are extremely harmful and can cause loss equivalent to a nuclear attack.
Answer:
The maximum height reached by the ball is 2.84 m
Explanation:
Given;
initial velocity of the soccer, u = 13 m/s
angle of projection, θ = 35°
The maximum height reached by the ball = ?
Apply the following kinematic equation, to determine the maximum height reached by the ball.
Maximum height (H) is given as;

Therefore, the maximum height reached by the ball is 2.84 m
Explanation:
Question 9 A machine is applying a torque to rotationally accelerate a metal disk during a manufacturing process. An engineer is using a graph of torque as a function of time to determine how much the disk's angular speed increases during the process The graph of torque as a function of time starts at an initial torque value and is a straight line with positive slope. What aspect of the graph and possibly other quantities must be used to calculate how much the disk's angular speed increases during the process? The slope of the graph multiplied by the disk's radius will equal the change in angular speed The area under the graph multiplied by the disk's radius will equal the change in angular speed. The slope of the graph divided by the disk's rotational inertia will equal the change in angular speed. The area under the graph divided by the disk's rotational inertia will equal the change in angular speed. The area under the graph multiplied by the disk's rotational inertia will equal the change in angular speed E
Explanation:
If a person is set to walk on a constant speed regardless of the situations then if the person walks a certain distance with no interruptions in an observed time then her speed can be calculated.
When the same person walking through the room momentarily stops to introduce herself then the average speed of the of the person slows down as it happens with the light wave when passes through glass which is an optically denser medium than the air, but the light wave does not stop anywhere in the medium.
It can be more relevant to the person's speed when she walks wading through the water or the person walks through the sand then the person feels resistance in the sand or in water which reduces her overall speed.