Answer:
Distance, d = 778.05 m
Explanation:
Given that,
Force acting on the car, F = 981 N
Mass of the car, m = 1550 kg
Initial speed of the car, v = 25 mi/h = 11.17 m/s
We need to find the distance covered by car if the force continues to be applied to the car. Firstly, lets find the acceleration of the car:

Let d is the distance covered by car. Using second equation of motion as :

So, the car will cover a distance of 778.05 meters.
Answer:
The time taken by the projectile to hit the ground is 6.85 sec.
Explanation:
Given that,
Vertical height of cliff = 230 m
Distance = 300 m
Suppose, determine the time taken by the projectile to hit the ground.
We need to calculate the time
Using second equation of motion

Where, s = vertical height of cliff
u = initial vertical velocity
g = acceleration due to gravity
Put the value in the equation



Hence, The time taken by the projectile to hit the ground is 6.85 sec.
Answer
Explanation:
As the three resistors are connected in series, the expression to be used for the
calculation of RT equivalent resistance
is:
RT = R1 + R2 + R3
We replace the data of the statement in the previous expression and it remains:
5 10 15 RT + R1 + R2 + R3 + +
We perform the mathematical operations that lead us to the result we are looking for:
RT - 30Ω
A treatment in which an electrical current is applied to the brain is;
D. Electroconvulsive therapy
<u>An electric current would be transmitted through the brain without anesthesia through this method. However, there may be side effects of possible seizures or broken bones. </u>