Answer:
The molarity (M) of the following solutions are :
A. M = 0.88 M
B. M = 0.76 M
Explanation:
A. Molarity (M) of 19.2 g of Al(OH)3 dissolved in water to make 280 mL of solution.
Molar mass of Al(OH)3 = Mass of Al + 3(mass of O + mass of H)
= 27 + 3(16 + 1)
= 27 + 3(17) = 27 + 51
= 78 g/mole
= 78 g/mole
Given mass= 19.2 g/mole


Moles = 0.246

Volume = 280 mL = 0.280 L

Molarity = 0.879 M
Molarity = 0.88 M
B .The molarity (M) of a 2.6 L solution made with 235.9 g of KBr
Molar mass of KBr = 119 g/mole
Given mass = 235.9 g

Moles = 1.98
Volume = 2.6 L


Molarity = 0.762 M
Molarity = 0.76 M
Answer:
A device that does work with only one movement and changes the size or direction of a force is a simple machine.
Explanation:
- For applying force, any used basic mechanical devices are simple machines.
- Simple machine changes the direction as well as the amplitude of the applied force i.e. we can increase or decrease the magnitude of the force.
- A simple machine is the most basic mechanism to use the force as we need in big mechanical machines.
- Some of the examples of simple machines are inclined plane, lever, wedge, wheel and axle, pulley, and screw.
Answer:
Endothermic
It absorbs heat
1.20 × 10³ kJ
Explanation:
Let's consider the following thermochemical equation.
2 H₂O(l) → 2 H₂(g) + O₂(g) ΔH = 572 kJ
Since ΔH > 0, the reaction is endothermic, that is, it absorbs heat when H₂O reacts.
572 kJ are absorbed when 36.03 g of water react. The heat absorbed when 75.8 g of H₂O react is:
75.8 g H₂O × (572 kJ/36.03 g H₂O) = 1.20 × 10³ kJ
I think the right answer for this question is option A. The energy absorbed so the mass will be increased.
Answer:
The system shifts forward
Explanation:
The forward reaction is favoured in order to reduce the disruption (excess heat) to the system. Position of equilibrium shifts rightwards of the equation for excess heat to be absorbed during the endothermic forward reaction