Answer:
Radioactive and are often called radioisotopes
The solution for the question above is:
C = 0.270
<span>V = 0.0275L </span>
<span>n = ? </span>
<span>Use the molar formula which is: C = n/V </span>
<span>Re-arrange it to: n = CV </span>
<span>n = (0.270)*(0.0275) </span>
<span>n = 0.007425 mols </span>
<span>(more precise) n = 7.425 x 10^-3 mols
</span>
7.425 x 10^-3 mols is the answer.
Answer : The value of
for the reaction is +571.6 kJ/mole.
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction is,

Now we have to determine the value of
for the following reaction i.e,

According to the Hess’s law, if we reverse the reaction then the sign of
change.
So, the value
for the reaction will be:


Hence, the value of
for the reaction is +571.6 kJ/mole.
All of the above would be the answer
mark me brainliest
Answer:
Explanation:
This type of experiment was carried out in 1960s on rodents, it was partially successful but was perceived impractical and dangerous for humans,it is possible theoretically.
Oxygen is broken down or dissolves in a thin film of fluid in the alveoli, surprisingly in normal breathing liquid composed of dissolved oxygen is involved. Evidently respiratory gas must be able to dissolve in this liquid and in concentration required to keep the partial pressure necessary to power diffusion.