First there is a need to calculate the molar mass of Ba(NO₃)₂:
137.3 + 2 (14.0) + 6 (16) = 261.3 grams/mole
The molar mass, denoted by M in chemistry refers to a physical characteristic illustrated as the mass of a given component divided by the amount of the component. The molar masses are always denoted in grams/mole.
After finding the molar mass, the number of moles can be identified as:
432 grams / 261.3 g/mol = 1.65 moles of Ba(NO₃)₂.
Cumulene is an alkene hydrocarbon that has two or three double bonds. It is also known as allene. The simplest cumulene is butatriene. It is a rigid hydrocarbon due to the presence of double bonds.
Answer: The orbital that overlap are p/p overlap, s/sp2 overlap, sp/sp2 overlap and sp/sp orbital.
Answer is: a beaker contains <span>
heterogeneous mixture.
</span>
A heterogeneous mixture<span> have compounds that remain separate in the sample.</span>
Heterogeneous
mixture is not uniform in composition (in this mixture different sand and small pebbles), but proportions of its components (in this
mixture particles of different colors and size) vary throughout
the sample.
The electromagnetic is a force that combines the effects of electrical charge and magnetism. The electromagnetic force can either attract or repel the particles on which it acts.
Answer:
244.76
Explanation:
The weight of grams by 1.82 moles of lithium carbonate would be: 134.481438 So we need to use this equation to find mass by grams m × g = ms Where m is for moles, g for grams, and ms for mass. So now we need use this equation: 1.82 × 134.481438 = ? 1.82 × 134.481438 = 244.75621716 244.75621716, rounded-up (to the nearest-tenths place) is 244.76. So now you have it! The mass of 1.82 moles of lithium carbonate is 244.76!