Answer:
Lenz’s law states that an induced magnetic field in a conductor opposes the applied flux through the conductor.
Explanation:
According to the Lenz's law, the direction of induced e.m.f is such that it generates a current which in turn produces a magnetic field that would oppose the change causing it.
In other words, the direction of any magnetic induction effect is such that it opposes the cause of the effect.
Therefore; an induced magnetic field in a conductor, opposes the applied flux through the conductor.
The solution for this problem is: In the figure, you now know that total length of the kerosene column
So at x – xPatm + Pkg(H0 th) = Pa + Pwgh
Now H0 + h = 20 + 91.1 mm = 111.1 mm
Therefore = Pkg 0.1111 – P2g= h = 56 x 0.111 – 98 / 1000 x 9.81= 0.081 m or 81 mn
Therefore H0 = 111.1 - 81= 30.1 mm
<span>It is false that it is the obligation of researchers to review and comment on the research of other researchers. It is not their obligations - they don't have to do it, although they can if they want to and if they are allowed by the author him or herself. However, they are not bound by law or something like that to do this, it's just due to their kindness or genuine interest that they do this.</span>
Answer:0.478 c
Explanation:
Given
mass of lighter Particle
mass of heavier Particle
speed of lighter particle
Let speed of heavier particle
and Momentum of the particle is given by





as momentum is conserved therefore 

