First, balance the reaction:
_ KClO₃ ==> _ KCl + _ O₂
As is, there are 3 O's on the left and 2 O's on the right, so there needs to be a 2:3 ratio of KClO₃ to O₂. Then there are 2 K's and 2 Cl's among the reactants, so we have a 1:1 ratio of KClO₃ to KCl :
2 KClO₃ ==> 2 KCl + 3 O₂
Since we start with a known quantity of O₂, let's divide each coefficient by 3.
2/3 KClO₃ ==> 2/3 KCl + O₂
Next, look up the molar masses of each element involved:
• K: 39.0983 g/mol
• Cl: 35.453 g/mol
• O: 15.999 g/mol
Convert 10 g of O₂ to moles:
(10 g) / (31.998 g/mol) ≈ 0.31252 mol
The balanced reaction shows that we need 2/3 mol KClO₃ for every mole of O₂. So to produce 10 g of O₂, we need
(2/3 (mol KClO₃)/(mol O₂)) × (0.31252 mol O₂) ≈ 0.20835 mol KClO₃
KClO₃ has a total molar mass of about 122.549 g/mol. Then the reaction requires a mass of
(0.20835 mol) × (122.549 g/mol) ≈ 25.532 g
of KClO₃.
A standard 60 W light bulb has a voltage of 130 volts. So, we use this conversion, the Faraday's constant which is equal to approximately 96,500 Coulombs per mole electron, and the Avogadro's number equal to 6.022×10²³ particles/mole . The solution is as follows:
W = Energy/time
60 W = x J/1 s
x = 60 J = 60 C·V
(60 C·V)*(1/130 V)*(1 mole e/96,500 C)*(6.022×10²³ electrons/mole electron)
= 2.88×10¹⁸ electrons
Answer:
196000 N
Explanation:
The following data were obtained from the question:
Height (h) = 10 m
Area (A) = 2 m²
Force (F) =.?
Next, we shall determine the pressure in the tank.
This can be obtained as follow:
P = dgh
Where
P is the pressure.
d is the density of the liquid.
g is acceleration due to gravity
h is the height.
Height (h) = 10 m
Density (d) of water = 1000 kg/m³
Acceleration due to gravity (g) = 9.8 m/s²
Pressure (P) =...?
P = dgh
P = 1000 × 9.8 × 10
P = 98000 N/m²
Therefore, the pressure acting on the tank is 98000 N/m²
Finally, we shall determine the force of gravity acting on the column of water as follow:
Area (A) = 2 m²
Pressure (P) = 98000 N/m²
Force (F) =.?
Pressure (P) = Force (F) /Area (A)
P = F /A
98000 = F/ 2
Cross multiply
F = 98000 × 2
F = 196000 N
Therefore, the force of gravity acting on the column of water is 196000 N
Answer:
600 J
Explanation:
The formula to find the kinetic energy of an object is
- m = mass in kg
- V = velocity in m/s
- KE is measured in Joules just as all other forms of energy.
Now, let's plug in the variables we're given and simplify.
Thus, the answer is 600 Joules.
Your experiment should keep one thing constant and measure the other. So vary the temp and measure the pressure. You will get a set of data that relates pressure with temp.
<span>PV = nRT
So
P and T are directly proportional.
</span>These experiments are one of either Boyle-Mariottte's, Gay-Lussac'a or Charles' law.