Given that,
The concentration of
TRIS = 0.30 M
The concentration of
TRIS+ = 0.60 M
Kb = 1.2 x 10^-6
pKb = -log Kb = - log
(1.2 x 10^-6) = 5.920
Now, by using the
Hendersonn equation,
pH = pKa + log
TRIS+/TRIS = 5.920 + log (0.60/0.30) = 6.221
<span>pOH=14-pH=14-6.221 =
7.779</span>
Answer:
Explanation:
The answer is C Enthaply and entropy because temperature plays a big role in reactions
<span>Mass is a property that determines how much effort it takes to change somethings velocity. Weight is how much downward force does something exert in a gravitational field which is just the amount of gravity time the mass of an object. We use mass interchangeable with weight because everything on earth experiences the same amount of gravity or close to it, and so something that weighs twice as much as something else also has twice as much mass as that something else. Weight can actually vary for the same mass here on earth the strength of gravity changes from one place to another by small amounts, not enough to ruin your cooking recipe instructions, and weight can change dramatically for something that is falling, the strength of gravity for astronauts in orbit is not much reduced in comparison to here on earth, if there was no gravity they wouldn't go around the earth, they are weightless because they are falling and have enough sideways velocity to keep missing the earth, but their mass has not changed, it still requires effort to get them moving or to stop them.
</span>
CH4 + O2 = CO2 + H2O - Chemical Equation Balancer.
Answer:
0.43 atm
Explanation:
From the question given above, the following data were obtained:
Initial pressure (P₁) = 0.95 atm
Initial volume (V₁) = 0.55 L
Final volume (V₂) = 1.22 L
Final pressure (P₂) =?
The final pressure of the gas can be obtained by using the Boyle's law equation as follow:
P₁V₁ = P₂V₂
0.95 × 0.55 = P₂ × 1.22
0.5225 = P₂ × 1.22
Divide both side by 1.22
P₂ = 0.5225 / 1.22
P₂ = 0.43 atm
Therefore, the final pressure of the gas is 0.43 atm