M ( HCl ) = ?
V ( HCl ) = 25.5 mL in liters : 25.5 / 1000 => 0.0255 L
M ( NaOH ) = 0.113 M
V ( NaOH ) = 51.2 mL / 1000 => 0.0512 L
number of moles NaOH:
n = M x V
n = 0.113 x <span> 0.0512 => 0.0057856 moles of NaOH
mole ratio:
</span><span>HCl + NaOH = NaCl + H2O
</span><span>
1 mole HCl -------------- 1 mole NaOH
( moles HCl ) ----------- </span><span> 0.0057856 moles NaOH
</span>
(moles HCl ) = <span> 0.0057856 x 1 / 1
</span>
= <span> 0.0057856 moles of HCl
</span>
M ( HCl ) = n / V
M = 0.0057856 / <span>0.0255
</span>
= 0.227 M
Answer A
hope this helps!
Answer:
21.2 moles.
Explanation:
Hello!
In this case, for the given chemical reaction, we can see there is a 1:4 mole ratio between tetraphosphorous decaoxide and phosphorous; therefore, the following proportional factor provides the requested moles of phodphorous:

Best regards!
Answer : The Bronsted-Lowry theory was not against the Arrhenius theory, rather it was just a modification to the previous theory of acids and bases. Hydroxide ions are considered as bases because they have the tendency to accept hydrogen ions from acids and form water.
An acid was the one which produces hydrogen ions in solution because it reacts with the water molecules by giving a proton to them.
In a nutshell, he described bases as hydrogen acceptor and acids as hydrogen donors.