Answer:
13.5g of AgNO3 will be needed
Explanation:
Silver nitrate, AgNO3 contains 1 mole of silver, Ag, per mole of nitrate. To solve this problem we need to convert the mass of Ag to moles. Thee moles = Moles of AgNO3 we need. With the molar mass of AgNO3 we can find the needed mass:
<em>Moles Ag-Molar mass: 107.8682g/mol-</em>
8.6g * (1mol / 107.8682g) = 0.0797 moles Ag = Moles AgNO3
<em>Mass AgNO3 -Molar mass: 169.87g/mol-</em>
0.0797 moles Ag * (169.87g/mol) =
<h3>13.5g of AgNO3 will be needed</h3>
Answer:
See explanation
Explanation:
If we look at the structure of X, we will discover that X is an organic compound. The compound will certainly have a much lower melting point than sand.
This is because, sand is composed of high melting point inorganic materials.
Hence, even though the researcher accidentally spilled some sand into the the beaker containing the crystalline substance X, he does not need to be perturbed since the melting point of X is much lower than that of sand
1) period
2) the answer is D) I because they are in the same column
3) B)Ge because they are in the same column
4) A) Al because they are in the same column (share same characteristics)
5) D) they have the same number of valence electrons
6) D) nonmetals
Answer:
Total energy consumed = 1,882.8 joules
Explanation:
Given:
Calories burned = 450 calories
Find:
Total energy consumed
Computation:
1 calorie = 4.184 joules
So,
450 calories = 4.184 × 450
450 calories = 1,882.8 joules
Total energy consumed = 1,882.8 joules
Answer:
2H2O2(aq)→ 2H2O(l) O2(g) : The oxidation number of oxygen for each compound is -1, -2, 0
Explanation:
In peroxides the oxidation state of oxygen is -1, since one oxygen bonds to the other oxygen and a hydrogen and the bound oxygen captures the electron of the remaining hydrogen. Through a scheme would be
H --- O --- O --- H
We remember that oxygen needs two electrons to get to have the configuration of the nearest noble gas (Lewis octet rule). In Peroxides, the oxygen is linked by covalent bonds. If we take it strictly, peroxide is a grouping of two oxygen, having the whole valence -2. which is why it is usually said that it is when oxygen has a valence -1
As we said the oxidation state is -2, the one that appears in the water molecule, since Hydrogen acts with valence +1 and it is 2 atoms that give up electrons to compensate for oxygen.
In the O2 it acts with valence 0 since we talk about gas in its elementary state. All diatomic molecules in their elemental state, generally gases or metals in solid state, act with a valence of 0.