Answer:
9.62 μm
Explanation:
From the question given above, the following data were obtained:
Frequency (f) = 31.2 THz
Wavelength (λ) =..?
Next, we shall convert 31.2 THz to Hz.
This can be obtained as follow:
Recall:
1 THz = 1×10¹² Hz
Therefore,
31.2 THz = 31.2 THz × 1×10¹² Hz / 1 THz
31.2 THz = 3.12×10¹³ Hz
Therefore, 31.2 THz is equivalent to 3.12×10¹³ Hz.
Finally, we shall determine the wavelength (λ) infrared radiation as follow:
Frequency (f) = 3.12×10¹³ Hz.
Velocity (v) = 3×10⁸ m/s
Wavelength (λ) =..?
V = λf
3×10⁸ = λ × 3.12×10¹³
Divide both side by 3.12×10¹³
λ = 3×10⁸ / 3.12×10¹³
λ = 9.62×10¯⁶ m
Converting 9.62×10¯⁶ m to micro metre (μm) we have:
1 m = 1×10⁶ μm
Therefore,
9.62×10¯⁶ m = 9.62×10¯⁶ m × 1×10⁶ μm / 1 m
9.62×10¯⁶ m = 9.62 μm
Therefore, the wavelength of the infrared radiation is 9.62 μm
Lead is often used to block out radiation
Answer:
Circuit 4
Explanation:
To know the correct answer to the question given above, we shall determine the current in each circuit. This can be obtained as follow:
For circuit 1:
Resistance (R) = 0.5 ohms
Voltage (V) = 20 V
Current (I) =?
V = IR
20 = I × 0.5
Divide both side by 0.5
I = 20 / 0.5
I = 40 A
For circuit 2:
Resistance (R) = 0.5 ohms
Voltage (V) = 40 V
Current (I) =?
V = IR
40 = I × 0.5
Divide both side by 0.5
I = 40 / 0.5
I = 80 A
For circuit 3:
Resistance (R) = 0.25 ohms
Voltage (V) = 40 V
Current (I) =?
V = IR
40 = I × 0.25
Divide both side by 0.25
I = 40 / 0.25
I = 160 A
For circuit 4:
Resistance (R) = 0.25 ohms
Voltage (V) = 60 V
Current (I) =?
V = IR
60 = I × 0.25
Divide both side by 0.25
I = 60 / 0.25
I = 240 A
SUMMARY
Circuit >>>>>> Current
1 >>>>>>>>>>> 40 A
2 >>>>>>>>>>> 80 A
3 >>>>>>>>>>> 160 A
4 >>>>>>>>>>> 240 A
From the above calculation, circuit 4 has the greatest electric current.
Above question is incomplete. Complete question is attached below
.......................................................................................................................
Correct Answer:
Option D i.e. CH3CH2CH2CH2CH3
Reason:
Isomers are the compounds having same molecular formula, but different structural formula.
The molecular formula of the compound is C5H12
The compound present is question (i.e. 2-methyl butane) and option D (n-pentane) has same molecular formula. Hence, they are isomers.However, compound present in option A, is the same compound provided in question. Hence, it is not an isomer. Compounds reported in option B and C has one carbon atom less and more, respectively as compared to the compound reported in question. Hence, they are also not isomers.