<u><em>Explanation:</em></u>
This exposes the individual to danger. <em>Remember</em>, the Newton Law of motion which says that an object under the state of rest will remain in that state (inertia) unless when acted upon by an external force.
In this scenario, standing at the back of the pickup truck presents danger especially if the truck suddenly stops; this individual would experience an upward thrust due to inertia that may disbalance him.
Answer:
15.34 kVA
Explanation:
A motor is a device that converts electrical energy into mechanical energy. It takes in electrical energy at the input and produce torque (motion) at the output.
The power consumption for a three phase motor is the product of voltage and current and √3. The √3 is because it is a three phase supply.
Hence Power (P) =√3 × voltage (V) × current (I)
P = √3 × V × I
Given that voltage (V) = 460 V, current (I) = 17 A. Hence:
P = √3 × V × I = √3 × 460 × 17 = 13544.64 VA
But 1000 VA = 1 kVA. Hence:

Answer:
iv) It is 9x bigger than before
Explanation:
As the amplitudes of the new speakers add directly with the original one, taking into account the phase that they have, the composed amplitude of the sound wave is as follows:
At = A + 4A -2A = 3 A
The intensity of the wave, assuming it propagates evenly in all directions, is constant at a given distance from the source, and can be expressed as follows:
I = P/A
where P= Power of the wave source, A= Area (for a point source, is equal to the surface area of a sphere of radius r, where is r is the distance to the source along a straight line)
For a sinusoidal wave, the power is proportional to the square of the amplitude, so the intensity is proportional to the square of the amplitude also.
If the amplitude changes increasing three times, the change in intensity will be proportional to the square of the change in amplitude, i.e., it will be 9 times bigger.
So, the statement iv) is the right one.