Answer:
the density of ordinary (baryonic) matter in the universe
Explanation:
Deuterium detection is of interest because the amount of it may be related to the amount of dark matter in the universe, but precise measurements have been difficult to obtain. Due to the way in which deuterium was created in the Big Bang, an exact measurement of the amount of deuterium would allow scientists to set limits on the models of the great explosion.
Also, an exact measure of deuterium would be an indicator of the cosmic density of barions (ordinary matter), and that density of barions would indicate whether ordinary matter is dark and is found in regions such as black holes, gas clouds or brown dwarfs, or it is bright and can be found in the stars. This information will help scientists who try to understand the very beginning of our universe.
Answer:
2500 J
Explanation:
We can solve the problem by using the first law of thermodynamics:

where
Uf is the final internal energy of the system
Ui is the initial internal energy
Q is the heat added to the system
W is the work done by the system
In this problem, we have:
Q = +1000 J (heat that enters the system)
W = +500 J (work done by the system)
Ui = 2000 J (initial internal energy)
Using these numbers, we can re-arrange the equation to calculate the final internal energy:

Answer:
Democritus
Explanation:
Democritus was a Greek philosopher who was the first person to use the term atom . However ,John Dalton was the first to adapt Democritus’ theory into the first modern atomic
model
Answer:
The expresion for the flux through the disk is:
Ф = E·πR^2·cos(Θ).
Explanation:
Let's sat the electric field has direction e and the normal to the disk has direction n (bold means vector quantities). So we have:
E=E·e (where E is the magnitud of the electric flied)
A=A·n
The flux for an uniform electric field and a flat surface is:
Ф=E×A
⇒ Ф = E·A·e×n = E·A·cos(angle(e,n)) = E·A·cos(Θ)
Since in this case the area is for a disk of radius R, 
So, Ф = E·πR^2·cos(Θ)
Resistance = (voltage) / (current)
For this piece of wire . . .
Resistance = (61 volts) / (6 Amperes)
Resistance = (61/6) (V/A)
<em>Resistance = (10 and 1/6) ohms</em>
Since you know the voltage and current, the length doesn't matter.