Answer:Light bounces off of the mirror and then appears to come from behind the mirror.
Explanation:Plane mirrors form images that are virtual, upright and the same size and shape as the object it is reflecting.
When rays of light from the object hits a plane mirror they bounces off the mirror,that is they undergo reflection, and appear to originate from behind the mirror, resulting to the formation of a virtual image.
The image formed appears to be behind the plane in which the mirror lies. A virtual image is an image that is formed at a location from which the rays of light appear to come from. The image can not be formed on a screen..
Answer:
The pH of the buffer solution is 4.60.
Explanation:
Concentration of acid = ![[HC_2H_3O_2]=0.225 M](https://tex.z-dn.net/?f=%5BHC_2H_3O_2%5D%3D0.225%20M)
Concentration of salt = ![[KC_2H_3O_2]=0.162 M](https://tex.z-dn.net/?f=%5BKC_2H_3O_2%5D%3D0.162%20M)
Dissociation constant = 
The pH of the buffer can be determined by Henderson-Hasselbalch equation:
![pH=pK_a+\log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
pH = 4.60
The pH of the buffer solution is 4.60.
Answer:
220.8L
Explanation:
Given parameters:
Initial volume = 50L
Initial temperature = 15°C = 288K
Initial pressure = 640mmHg
Final temperature = 45°C = 318K
Final pressure = 160mmHg
Unknown:
Final volume = ?
Solution:
Using the combined law;
=
p,v and T are pressure, volume and Temperature
=
160 x 288 x v₂ = 640 x 50 x 318
v₂ = 220.8L
The elements combine with other elements in order to complete their octet and attain stability. The combination can take place either by transfer of electrons or by sharing of electrons. The sharing of electrons results in formation of covalent bond whereas transfer of electrons results in the formation of ionic bonds. The loss of electrons will result in the formation of cation whereas the gain of electrons results in formation of anion. The two oppositely charged ions are held together by electrostatic force of attraction between them.
Hence, an ionic is a force that holds two oppositely charged ions together.