Answer:
Density of the sample will be 13.4 kg/L
Explanation:
We have given volume of the sample 
Mass of the sample 
We have to find the density of the sample
Density of the sample is given by

So density of the sample will be 13.4 kg/L
Explanation:
The criteria for decision making would be
1. I would fund for the school of young diabetics, for the sole purpose of them leaning and being motivated for a healthy lifestyle.
2. I would also fund for new and improved insulin pumps as old ones cause multiple problems.
We use 1/o + 1/i = 1/f where o is the distance of the object, i as distance of the image and f is the focal length.
Substituting, <span>1/ 100 + 1 / i = - 1 /25 </span>
<span>i = - 20 cm </span>
<span>For the case of the problem,</span>
<span>o = (20 + 30) = 50 cm </span>
<span>f = 33.33. </span>Using 1<span> / i + 1 / o = 1/f , </span><span> </span><span>i = 100 cm </span>
<span>M = magnification = - i / o </span>
<span>m1 = -(-20)/100 = 20/100 = 0.2 </span>
<span>m2 = -100/50 = -2 </span>
<span>M = m1*m2 = -2 x 0.2 = -0.4.</span>
Answer:
Soory
Explanation:
I really dont know but i will send you wait
Answer:
v=14.14 m/s
t=1.141 s
Explanation:
Given that
h = 10 m
Initial velocity ,u = 0 m/s
We know that acceleration due to gravity g= 10 m/s²
Lets take final velocity = v
Final velocity v is given as
v² = u²+ 2 g h
v²= 0² + 2 x 10 x 10
v²= 200
v=14.14 m/s
Time taken t is given as
v= u + a t
a=acceleration
t=time
Now by putting the values in the above equation we get
14.14= 0 + 10 x t
14.14 = 10 t
t=1.141 s